We consider a dynamic panel AR(1) model with fixed effects when both n and T are large. Under the "T fixed n large" asymptotic approximation, the maximum likelihood estimator is known to be inconsistent due to the well-known incidental peirameter problem. We consider an alternative asymptotic approximation where n and T grow at the same rate. It is shown that, although the MLE is asymptotically biased, a relatively simple fix to the MLE results in an asymptotically unbiased estimator. The bias corrected MLE is shown to be asymptotically efficient by a Hajek type convolution theorem.
We consider a dynamic panel AR(1) model with fixed effects when both n and T are large. Under the "T fixed n large" asymptotic approximation, the maximum likelihood estimator is known to be inconsistent due to the well-known incidental peirameter problem. We consider an alternative asymptotic approximation where n and T grow at the same rate. It is shown that, although the MLE is asymptotically biased, a relatively simple fix to the MLE results in an asymptotically unbiased estimator. The bias corrected MLE is shown to be asymptotically efficient by a Hajek type convolution theorem.
SummaryIn this paper, we consider parameter estimation in a linear simultaneous equations model. It is well known that two-stage least squares (2SLS) estimators may perform poorly when the instruments are weak. In this case 2SLS tends to suffer from the substantial small sample biases. It is also known that LIML and Nagar-type estimators are less biased than 2SLS but suffer from large small sample variability. We construct a bias-corrected version of 2SLS based on the Jackknife principle. Using higher-order expansions we show that the MSE of our Jackknife 2SLS estimator is approximately the same as the MSE of the Nagartype estimator. We also compare the Jackknife 2SLS with an estimator suggested by Fuller (Econometrica 45, 933-54) that significantly decreases the small sample variability of LIML. Monte Carlo simulations show that even in relatively large samples the MSE of LIML and Nagar can be substantially larger than for Jackknife 2SLS. The Jackknife 2SLS estimator and Fuller's estimator give the best overall performance. Based on our Monte Carlo experiments we conduct informal statistical tests of the accuracy of approximate bias and MSE formulas. We find that higher-order expansions traditionally used to rank LIML, 2SLS and other IV estimators are unreliable when identification of the model is weak. Overall, our results show that only estimators with well-defined finite sample moments should be used when identification of the model is weak.
The fixed effects estimator of panel models can be severely biased because of well-known incidental parameter problems. It is shown that this bias can be reduced in nonlinear dynamic panel models. We consider asymptotics wherenandTgrow at the same rate as an approximation that facilitates comparison of bias properties. Under these asymptotics, the bias-corrected estimators we propose are centered at the truth, whereas fixed effects estimators are not. We discuss several examples and provide Monte Carlo evidence for the small sample performance of our procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.