Hydrophilic phenols are the most abundant natural antioxidants of virgin olive oil (VOO), in which, however, tocopherols and carotenes are also present. The prevalent classes of hydrophilic phenols found in VOO are phenolic alcohols, phenolic acids, flavonoids, lignans and secoiridoids. Secoiridoids, that include aglycon derivatives of oleuropein, demethyloleuropein and ligstroside, that are present in olive fruit, are the most abundant phenolic antioxidants of VOO. The sensory and healthy proprieties of VOO hydrophilic phenols as well as the agronomic and technological parameters that affect their concentration in the oil are discussed in this paper.
Recent epidemiological evidence and animal studies suggest a relationship between the intake of olive oil and a reduced risk of several malignancies. The present study assesses the effect of hydroxytyrosol, a major antioxidant compound of virgin olive oil, on proliferation, apoptosis and cell cycle of tumour cells. Hydroxytyrosol inhibited proliferation of both human promyelocytic leukaemia cells HL60 and colon adenocarcinoma cells HT29 and HT29 clone 19A. The con-centrations of hydroxytyrosol which inhibited 50% of cell proliferation were approximately 50 and approximately 750 micromol/l for HL60 and both HT29 and HT29 clone 19A cells, respectively. At concentrations ranging from 50 to 100 micromol/l, hydroxytyrosol induced an appreciable apoptosis in HL60 cells after 24 h of incubation as evidenced by flow cytometry, fluorescence microscopy and internucleosomal DNA fragmentation. Interestingly, no effect on apoptosis was observed after similar treatment of freshly isolated human lymphocytes and polymorphonuclear cells. The DNA cell cycle analysis, quantified by flow cytometry, showed that the treatment of HL60 cells with hydroxytyrosol 50-100 micromol/l arrested the cells in the G0/G1 phase with a concomitant decrease in the cell percentage in the S and G2/M phases. These results support the hypothesis that hydroxytyrosol may exert a protective activity against cancer by arresting the cell cycle and inducing apoptosis in tumour cells, and suggest that hydroxytyrosol, an important component of virgin olive oil, may be responsible for its anticancer activity.
Our aim in this study was to provide further support to the hypothesis that phenolic compounds may play an important role in the anticarcinogenic properties of olive oil. We measured the effect of olive oil phenols on hydrogen peroxide (H(2)O(2))-induced DNA damage in human peripheral blood mononuclear cells (PBMC) and promyelocytic leukemia cells (HL60) using single-cell gel electrophoresis (comet assay). Hydroxytyrosol [3,4-dyhydroxyphenyl-ethanol (3,4-DHPEA)] and a complex mixture of phenols extracted from both virgin olive oil (OO-PE) and olive mill wastewater (WW-PE) reduced the DNA damage at concentrations as low as 1 micromol/L when coincubated in the medium with H(2)O(2) (40 micromol/L). At 10 micromol/L 3,4-DHPEA, the protection was 93% in HL60 and 89% in PBMC. A similar protective activity was also shown by the dialdehydic form of elenoic acid linked to hydroxytyrosol (3,4-DHPEA-EDA) on both kinds of cells. Other purified compounds such as isomer of oleuropein aglycon (3,4-DHPEA-EA), oleuropein, tyrosol, [p-hydroxyphenyl-ethanol (p-HPEA)] the dialdehydic form of elenoic acid linked to tyrosol, caffeic acid, and verbascoside also protected the cells against H(2)O(2)-induced DNA damage although with a lower efficacy (range of protection, 25-75%). On the other hand, when tested in a model system in which the oxidative stress was induced by phorbole 12-myristate 13-acetate-activated monocytes, p-HPEA was more effective than 3,4-DHPEA in preventing the oxidative DNA damage. Overall, these results suggest that OO-PE and WW-PE may efficiently prevent the initiation step of carcinogenesis in vivo, because the concentrations effective against the oxidative DNA damage could be easily reached with normal intake of olive oil.
Although epidemiologic evidence and animal studies suggest that olive oil may prevent the onset of cancer, the components responsible for such an effect and their mechanisms of action remain largely unknown. In the present study, we investigated the effect of a virgin olive oil phenol extract (PE) on proliferation, the cell cycle distribution profile, apoptosis, and differentiation of the human promyelocytic cell line HL60. PE inhibited HL60 cell proliferation in a time- and concentration-dependent manner, as demonstrated by the viable cell count and 3-[4,5-dimethyl(thiazol-2-yl)]-3,5-diphenyltetrazolium bromide (MTT) metabolism. Cell growth was completely blocked at a PE concentration of 13.5 mg/L; apoptosis was also induced as detected by fluorescence microscopy and flow cytometry. Determination of the cell cycle distribution by flow cytometry revealed an accumulation of cells in the G(0)/G(1) phase. Two compounds isolated from PE, the dialdehydic forms of elenoic acid linked to hydroxytyrosol (3,4-DHPEA-EDA) and to tyrosol (pHPEA-EDA), were shown to possess properties similar to those of PE; they account for a part of the powerful effects exerted by the complex mixture of compounds present in PE. The concentrations of the different compounds in PE were determined by HPLC, and the purity of 3,4-DHPEA-EDA and pHPEA-EDA was ascertained by NMR. Treatment with PE induced a differentiation in HL60 cells, which subsequently acquired the ability to produce superoxide ions and reduce nitroblue tetrazolium to formazan. These results support the hypothesis that polyphenols play a critical role in the anticancer activity of olive oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.