Objective-Apoptotic cell death has been demonstrated in advanced human atherosclerotic plaques. Apoptotic cells (ACs) should be rapidly removed by macrophages, otherwise secondary necrosis occurs, which in turn elicits inflammatory responses and plaque progression. Therefore, we investigated the efficiency of phagocytosis of ACs by macrophages in atherosclerosis. Methods and Results-Human endarterectomy specimens and human tonsils were costained for CD68 (macrophages) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) (apoptosis). Free and phagocytized ACs were counted in both tissues. The ratio of free versus phagocytized AC was 19-times higher in human atherosclerotic plaques as compared with human tonsils, indicating a severe defect in clearance of AC. Impaired phagocytosis of AC was also detected in plaques from cholesterol-fed rabbits and did not further change with plaque progression. In vitro experiments with J774 or peritoneal mouse macrophages showed that several factors caused impaired phagocytosis of AC including cytoplasmic overload of macrophages with indigestible material (beads), free radical attack, and competitive inhibition among oxidized red blood cells, oxidized low-density lipoprotein and ACs for the same receptor(s) on the macrophage. Conclusion-Our data demonstrate that phagocytosis of ACs is impaired in atherosclerotic plaques, which is at least partly attributed to oxidative stress and cytoplasmic saturation with indigestible material. (Arterioscler Thromb Vasc Biol. 2005;25:1256-1261.)Key Words: atherosclerosis Ⅲ apoptosis Ⅲ macrophages Ⅲ oxidative stress Ⅲ phagocytosis A poptotic cell death is an important pathophysiological mechanism in many diseases. With regard to the cardiovascular system, an increased apoptosis rate occurs in advanced human atherosclerotic plaques. [1][2][3] All cell types present in atherosclerotic plaques, including endothelial cells, smooth muscle cells (SMCs), lymphocytes, and macrophages, are known to undergo apoptosis. Despite many efforts in determining the potential mechanisms of apoptosis, the significance of apoptotic cell death in atherosclerosis remains unclear. SMC apoptosis can be harmful because it may weaken the fibrous cap of the plaque. In contrast, apoptosis of macrophages and T lymphocytes may be beneficial because removal of these cells from the plaque could attenuate the inflammatory response and decrease the synthesis of matrix metalloproteinases. However, loss of macrophages also decreases the uptake of apoptotic bodies. Inefficient removal of apoptotic cells (ACs) by macrophages may contribute to the formation of a necrotic core through induction of postapoptotic necrosis and accumulation of necrotic debris. Moreover, cells undergoing secondary necrosis release potentially toxic components from the cytoplasm which may trigger inflammatory responses. 4,5 Macrophages also secrete pro-inflammatory mediators by the ingestion of ACs undergoing secondary necrosis, but not by intact ACs. 6 Apart from SMC loss, dec...
Background-The transition of a fatty streak into an atherosclerotic plaque is characterized by the appearance of focal and diffuse regions of cell death. We have investigated the distribution of apoptotic cell death and apoptosis-related proteins in early and advanced atherosclerotic lesions. Methods and Results-Human atherosclerotic plaques were studied by whole-mount carotid endarterectomy specimens (nϭ18). This approach allowed comparison of adaptive intimal thickenings, fatty streaks, and advanced atherosclerotic plaques of the same patient. The fatty streaks differed from adaptive intimal thickenings by the presence of BAX (PϽ0.01), a proapoptotic protein of the BCL-2 family. Both regions were composed mainly of smooth muscle cells (SMCs), and macrophage infiltration was low and not different. Apoptosis, as detected by DNA in situ end labeling (terminal deoxynucleotidyl transferase end labeling [TUNEL] and in situ nick translation) was not present in these regions. Apoptosis of SMCs and macrophages, however, was present in advanced atherosclerotic plaques that were present mainly in the carotid sinus. A dense infiltration of macrophages (5.8Ϯ3% surface area) was present in these advanced atherosclerotic plaques. Cytoplasmic remnants of apoptotic SMCs, enclosed by a cage of thickened basal lamina, were TUNEL negative and remained present in the plaques as matrix vesicles. Conclusions-We conclude that SMCs within human fatty streaks express BAX, which increases the susceptibility of these cells to undergo apoptosis. The localization of these susceptible SMCs in the deep layer of the fatty streaks could be important in our understanding of the transition of fatty streaks into atherosclerotic plaques, which are characterized by regions of cell death. Matrix vesicles are BAX-immunoreactive cytoplasmic remnants of fragmented SMCs that can calcify and may be considered the graves of SMCs that have died in the plaques. (Circulation. 1998;97:2307-2315.)
In the present review, we describe the causes and consequences of loss of vascular smooth muscle cells (VSMCs) or their function in advanced atherosclerotic plaques and discuss possible mechanisms such as cell death or senescence, and induction of autophagy to promote cell survival. We also highlight the potential use of pharmacological modulators of these processes to limit plaque progression and/or improve plaque stability. VSMCs play a pivotal role in atherogenesis. Loss of VSMCs via initiation of cell death leads to fibrous cap thinning and promotes necrotic core formation and calcification. VSMC apoptosis is induced by pro-inflammatory cytokines, oxidized low density lipoprotein, high levels of nitric oxide and mechanical injury. Apoptotic VSMCs are characterized by a thickened basal lamina surrounding the cytoplasmic remnants of the VSMC. Inefficient clearance of apoptotic VSMCs results in secondary necrosis and subsequent inflammation. A critical determinant in the VSMC stress response and phenotypic switching is autophagy, which is activated by various stimuli, including reactive oxygen and lipid species, cytokines, growth factors and metabolic stress. Successful autophagy stimulates VSMC survival, whereas reduced autophagy promotes age-related changes in the vasculature. Recently, an interesting link between autophagy and VSMC senescence has been uncovered. Defective VSMC autophagy accelerates not only the development of stress-induced premature senescence but also atherogenesis, albeit without worsening plaque stability. VSMC senescence in atherosclerosis is likely a result of replicative senescence and/or stress-induced premature senescence in response to DNA damaging and/or oxidative stress-inducing stimuli. The finding that VSMC senescence can promote atherosclerosis further illustrates that normal, adequate VSMC function is crucial in protecting the vessel wall against atherosclerosis.
Background-The formation of reactive oxygen species is a critical event in atherosclerosis because it promotes cell proliferation, hypertrophy, growth arrest, and/or apoptosis and oxidation of LDL. In the present study, we investigated whether reactive oxygen species-induced oxidative damage to DNA occurs in human atherosclerotic plaques and whether this is accompanied by the upregulation of DNA repair mechanisms. Methods and Results-We observed increased immunoreactivity against the oxidative DNA damage marker 7,8-dihydro-8-oxo-2Ј-deoxyguanosine (8-oxo-dG) in plaques of the carotid artery compared with the adjacent inner media and nonatherosclerotic mammary arteries. Strong 8-oxo-dG immunoreactivity was found in all cell types of the plaque including macrophages, smooth muscle cells, and endothelial cells. As shown by competitive ELISA, carotid plaques contained 160Ϯ29 8-oxo-dG residues/10 5 dG versus 3Ϯ1 8-oxo-dG residues/10 5 dG in mammary arteries. Single-cell gel electrophoresis showed elevated levels of DNA strand breaks in the plaque. The overall number of apoptotic nuclei was low (1% to 2%) and did not correlate with the amount of 8-oxo-dG immunoreactive cells (Ͼ90%). This suggests that initial damage to DNA occurs at a sublethal level. Several DNA repair systems that are involved in base excision repair (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.