Quinoa flour has been receiving an increasing attention as a substitute for wheat flour in bread formulations due to immuno-nutritional features. This growing interest in quinoa has increased the demand and consequently the prices, being a target for possible adulterations with cheaper cereals. Fourier transform Mid-infrared spectroscopy (FT-MIR) was used in the present work as a fingerprinting technique to detect the presence of three adulterants (soybean, maize and wheat flours). Partial least squares discriminant analysis (PLS-DA) and soft independent modelling of class analogy (SIMCA) models were used to classify pure from adulterated samples. 414 samples were measured, including pure quinoa flour, pure adulterant flours and adulterated quinoa flours using three different proportions (10, 5 and 1% w/w). PLS-DA showed better classification results than SIMCA, with error rates from 2 to 8% for the three strategies used to detect the presence of adulterants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.