A novel control algorithm, namely subsection adaptive hill climbing method (SSAHC), for seeking the maximum power point (MPP) of a photovoltaic (PV) panel for any temperature and solar radiation level is proposed. The algorithm is thus a combination of the subsection and adaptive hill climbing methods. In this algorithm, the characteristic curve of power-voltage of PV panel was divided into three subsections, namely large step approximation section, adaptive hill climbing section and maximum power section. Using this method, the MPP tracker (MPPT) can tune adaptively the step to track the MPP of PV system. The main advantage of the MPPT controlled by this new algorithm, when is compared with others, is that it can draw more power at a certain weather condition , especially, in case solar radiation changes rapidly at higher radiation.
Plug-in hybrid electric vehicles (PHEVs) have been offered as alternatives that could greatly reduce fuel consumption relative to conventional vehicles. A successful PHEV design requires not only optimal component sizes but also proper control strategy. In this paper, a global optimization method, called parallel chaos optimization algorithm (PCOA), is used to optimize simultaneously the PHEV component sizes and control strategy. In order to minimize the cost, energy consumption (EC), and emissions, a multiobjective nonlinear optimization problem is formulated and recast as a single objective optimization problem by weighted aggregation. The driving performance requirements of the PHEV are considered as the constraints. In addition, to evaluate the objective function, the optimization process is performed over three typical driving cycles including Urban Dynamometer Driving Schedule (UDDS), Highway Fuel Economy Test (HWFET), and New European Driving Cycle (NEDC). The simulation results show the effectiveness of the proposed approach for reducing the fuel cost, EC and emissions while ensuring that the vehicle performance has not been sacrificed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.