Postherpetic neuralgia (PHN), the most common complication of herpes zoster (HZ), plays a major role in decreased life quality of HZ patients. However, the neural mechanisms underlying PHN remain unclear. Here, using a PHN rat model at 2 weeks after varicella zoster virus infection, we found that spinal astrocytes were dramatically activated. The mechanical allodynia and spinal central sensitization were significantly attenuated by intrathecally injected L-α-aminoadipate (astrocytic specific inhibitor) whereas minocycline (microglial specific inhibitor) had no effect, which indicated that spinal astrocyte but not microglia contributed to the chronic pain in PHN rat. Further study was taken to investigate the molecular mechanism of astrocyte-incudced allodynia in PHN rat at post-infection 2 weeks. Results showed that nitric oxide (NO) produced by inducible nitric oxide synthase mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal dorsal horn neurons to strengthen pain transmission. Taken together, these results suggest that spinal activated astrocytes may be one of the most important factors in the pathophysiology of PHN and “NO-Astrocyte-Cytokine-NMDAR-Neuron” pathway may be the detailed neural mechanisms underlying PHN. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for clinical management of PHN.
Effects of the enzymes in Actinomucor elegans extract and the enzyme Alcalase 2.4L on debittering the soybean protein hydrolysates were investigated. When the protein was treated only with the latter, a strong bitterness formed; but it decreased if the protein was treated with both the enzymes. The more the enzymes were used, weaker was the bitterness tasted. SDS-PAGE profile and ESI-MS spectrum of the hydrolysates evidenced that the Alcalase could convert the protein into peptides rapidly, while the enzymes in the A. elegans extract were able to further degrade some peptides which were difficult or unable to be hydrolyzed by the Alcalase. Further systematic analysis of the peptidases showed that the Alcalase exhibited a significant endopeptidase activity towards NBZ-Phe-pNA substrate (p < 0.01), whereas many exopeptidases in the A. elegans extract had the carboxypeptidase activity towards N-CBZ-Ile-Leu (p < 0.01). It is concluded that those exopeptidases presented in the A. elegans extract can benefit by decreasing the bitterness of the soybean protein hydroysate. They are also capable of being used with the Alcalase in a single-step enzymatic reaction to prepare the bitterless protein hydrolysate, which may be an efficient application for food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.