Sagittaria trifolia is an aquatic plant that is distributed worldwide. The edible tuber part of S. trifolia is a very common and popular vegetable in China. The aim of the present review is to discuss the discovery of nutraceuticals from S. trifolia tuber by reviewing its major constituents, food processing, food products, and health-promoting benefits. Sagittaria trifolia tuber comprises a series of nutritional and bioactive constituents, including dietary fibers, amino acids, minerals, starches, non-starch polysaccharides, diterpenoids, colchicine, phenols, and organic acids. Food processing affects its flavor, biocomponents, and bioactivity. Numerous S. trifolia tuber-based food products and nutraceuticals have been developed, but new categories of products and the anticipated functions still need to be explored. The non-starch polysaccharides could be the central ingredients that contribute to the plant's antioxidant, hepatoprotective, hypoglycemic, lipid-regulating, and immunostimulatory properties. Of these, antioxidant and hepatoprotective effects have been thoroughly investigated. Procedures for the extraction and purification of polysaccharides influence their health-promoting actions. Overall, S. trifolia tuber is an underutilized aquatic vegetable species that is an emerging subject for nutraceutical research.
Sagittaria trifolia tuber is an aquatic vegetable. In this work, microwave‐assisted enzymatic extraction (MEE) was used to extract S. trifolia tuber polysaccharides (STTPs). Optimum conditions were complex enzyme of 2 %, liquid‐to‐solid ratio of 43 : 1 mL g−1, microwave power of 506 W, and time of 8 min, under which STTPs yield was 36.22±0.69 %, higher than those of other methods. STTPs were sulfated polysaccharides with sulfur valence of S6+. STTPs comprised mannose, glucose, galactose, and arabinose at a mole ratio of 3.69 : 19.33 : 6.21 : 1.00, molecular weights of 3606 kDa and 149.6 kDa, particle size of 220 nm, and zeta potential of −5.02 mV. The surface of STTPs was full of bumps and holes, and abundant in O1s and non‐functionalized C1s. STTPs would scavenge reactive oxygen species with advantage. It would provide an efficient MEE method to obtain antioxidant STTPs, also a clue for extracting polysaccharides from starch‐rich crops.
Eleocharis dulcis, an aquatic plant belonging to Cyperaceae family, is indigenous to Asia, and also occurs in tropical Africa and Australia. The edible corm part of E. dulcis is a commonly consumed aquatic vegetable with a planting area of 44.46 × 103 hm2 in China. This work aims to explore the potential of E. dulcis corm for use as a new food source for sufficient nutrients and health benefits by reviewing its nutrients, phytochemicals, functions, processing and food products. Eleocharis dulcis corm contains starches, dietary fibers, non‐starch polysaccharides, proteins, amino acids, phenolics, sterols, puchiin, saponins, minerals and vitamins. Among them, phenolics including flavonoids and quinones could be the major bioconstituents that largely contribute to antioxidant, anti‐inflammatory, antibacterial, antitumor, hepatoprotective, neuroprotective and hypolipidemic functions. Peel wastes of E. dulcis corm tend to be enriched in phenolics to a much higher extent than the edible pulp. Fresh‐cut E. dulcis corm can be consumed as a ready‐to‐eat food or processed into juice for beverage production, and anti‐browning processing is a key to prolonging shelf life. Present food products of E. dulcis corm are centered on various fruit and vegetable beverages, and suffer from single categories and inadequate development. In brief, underutilized E. dulcis corm possesses great potential for use as a new food source for sufficient nutrients and health benefits. © 2021 Society of Chemical Industry.
Overcoming blood-brain barrier (BBB) to improve brain bioavailability of therapeutic drug remains an ongoing concern. Prodrug is one of the most reliable approaches for delivering agents with low-level BBB permeability into the brain. The well-known antioxidant capacities of cysteine (Cys) and its vital role in glutathione (GSH) synthesis indicate that Cys-based prodrug could potentiate therapeutic drugs against oxidative stress-related neurodegenerative disorders. Moreover, prodrug with Cys moiety could be recognized by the excitatory amino acid transporter 3 (EAAT3) that is highly expressed at the BBB and transports drug into the brain. In this review, we summarized the strategies of crossing BBB, properties of EAAT3 and its natural substrates, Cys and its donors, and Cys donor-based brain-targeting prodrugs by referring to recent investigations. Moreover, the challenges that we are faced with and future research orientations were also addressed and proposed. It is hoped that present review will provide evidence for the pursuit of novel Cys donor-based brain-targeting prodrug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.