Bisphenol A (BPA) is considered to be an endocrine disruptor, but the mechanisms by which it disrupts endocrine functions are poorly understood. Here, we have shown that BPA binds both estrogen receptor (ER)-α and ER-beta (ER-β) using a fluorescence polarization competitive binding assay. In addition, we found that BPA induced cell proliferation by modulating cell cycle-related genes in the MCF-7 human mammary cancer cell line. Moreover, using a BG1 luciferase ER transactivation assay, we found that BPA has estrogenic activity. Modulating the MAPK pathway by using an ERK inhibitor (PD98059) or a JNK inhibitor (SP600125) had no effect on the ability of BPA to induce estrogenic activity. However, the antiestrogen, ICI 182,780, and the p38 inhibitor, PD 169316 successfully blocked BPA-induced estrogenic activity. Our findings suggest that BPA mimics ER-dependent estrogenic activity by targeting proteins that regulate the cell cycle and p38 MAPK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.