Reversible data hiding (RDH) is a useful technique of data security. Embedding capacity is one of the most important performance of RDH for encrypted image. Many existing RDH algorithms for encrypted image do not reach desirable embedding capacity yet. To address this problem, a new RDH algorithm is proposed for encrypted image based on adaptive prediction error coding. The proposed RDH algorithm uses a block-based encryption scheme to preserve spatial correlation of original image in the encrypted domain and exploits a novel technique called adaptive prediction error coding to vacate room for data embedding. A key contribution of the proposed RDH algorithm is the adaptive prediction error coding. It can efficiently vacate room from encrypted image block by adaptively coding prediction errors according to block content and thus contributes to a large embedding capacity. Many experiments on benchmark image databases are done to validate performance of the proposed RDH algorithm. The results show that the average embedding rates on the open databases of UCID, BOSSBase and BOWS-2 are 1.7081, 2.4437 and 2.3083 bpp, respectively. Comparison results illustrate that the proposed RDH algorithm outperforms some state-of-the-art RDH algorithms in embedding capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.