Riemerella anatipestifer is an important pathogen that causes septicemia anserum exsudativa in ducks. Lipopolysaccharide (LPS) is considered to be a major virulence factor of R. anatipestifer. To identify genes involved in LPS biosynthesis, we screened a library of random Tn4351 transposon mutants using a monoclonal antibody against R. anatipestifer serotype 1 LPS (anti-LPS MAb). A mutant strain RA1067 which lost the reactivity in an indirect ELISA was obtained. Southern blot and sequencing analyses indicated a single Tn4351 was inserted at 116 bp in the M949_RS01915 gene in the RA1067 chromosomal DNA. Silver staining and Western blot analyses indicated that the RA1067 LPS was defected compared to the wild-type strain CH3 LPS. The RA1067 displayed a significant decreased growth rate at the late stage of growth in TSB in comparison with CH3. In addition, RA1067 showed higher susceptibility to complement-dependent killing, more than 360-fold attenuated virulence based on the median lethal dose determination, increased bacterial adhesion and invasion capacities to Vero cells and significantly decreased blood bacterial loads in RA1067 infected ducks, when compared to the CH3. An animal experiment indicated that inactivated RA1067 cells was effective in cross-protecting of the ducks from challenging with R. anatipestifer strains WJ4 (serotype 1), Yb2 (serotype 2) and HXb2 (serotype 10), further confirming the alteration of the RA1067 antigenicity. Moreover, RNA-Seq analysis and real-time PCR verified two up-regulated and three down-regulated genes in RA1067. Our findings demonstrate that the M949_RS01915 gene is associated to bacterial antigenicity, pathogenicity and gene regulation of R. anatipestifer.
In this study, the Riemerella anatipestifer mutant strain RA1062 was obtained by screening a random Tn4351 transposon mutant library. The mutant strain was unreactive with the anti-CH3 lipopolysaccharide monoclonal antibody, as demonstrated with an enzyme-linked immunosorbent assay, and its M949_RS01035 gene was inactivated. When cultured in trypticase soy broth, the late stage growth of the mutant RA1062 was significantly decreased. The mutant RA1062 was stained with crystal violet and presented a rough lipopolysaccharide phenotype, which differed from that of the wild-type strain CH3, suggesting that deletion of the M949_RS01035 gene resulted in defective lipopolysaccharide. Silver staining and Western blot analyses further confirmed that the RA1062 lipopolysaccharide had a deficiency in ladder-like binding pattern, as compared to lipopolysaccharide of the wild-type CH3 strain. In addition, the mutant RA1062 showed a higher susceptibility to complement-dependent killing, increased bacterial adhesion and invasion capacities to Vero cells, decreased blood bacterial loads, and attenuated virulence in infected ducks, when compared to the wild-type strain CH3. Moreover, RNA-Seq and real-time polymerase chain reaction analyses indicated that two genes were up-regulated and two were down-regulated in the mutant RA1062 genome. Furthermore, an animal protection experiment showed that immunization of ducks with inactivated RA1062 bacterin conferred effective cross-protection against challenge with the virulent R. anatipestifer serotypes 1, 2, and 10. This study presents evidence that the M949_RS01035 gene is involved in bacterial phenotype, virulence, and gene regulation in R. anatipestifer. The mutant strain RA1062 could be used as a cross-protective vaccine candidate.Electronic supplementary materialThe online version of this article (10.1186/s13567-018-0589-8) contains supplementary material, which is available to authorized users.
Riemerella anatipestifer causes septicemic and exudative diseases in poultry, resulting in major economic losses to the duck industry. Lipopolysaccharide (LPS), as an important virulence factor in Gram-negative bacteria, can be recognized by the immune system and plays a crucial role in many interactions between bacteria and animal hosts. In this study, we screened out one LPS defective mutant strain RAΔ604 from a random transposon mutant library of R. anatipestifer serotype 1 strain CH3, which did not react with the anti-CH3 LPS monoclonal antibody 1C1 in an indirect enzyme-linked immunosorbent assay. Southern blot analysis confirmed that the genome of RAΔ604 contained a single Tn4351 insert. Then, we found that the M949_1360 gene was inactivated by insertion of the transposon. Using silver staining and western blot analyses, we found that the LPS pattern of RAΔ604 was defective, as compared with that of the wild-type (WT) strain CH3. The mutant strain RAΔ604 showed no significant influence on bacterial growth, while bacterial counting and Live/dead BacLight Bacterial Viability staining revealed that bacterial viability was decreased, as compared with the WT strain CH3. In addition, the abilities of the mutant strain RAΔ604 to adhere and invade Vero cells were significantly decreased. Animal studies revealed that the virulence of the mutant strain RAΔ604 was decreased by more than 200-fold in a duck infection model, as compared with the WT strain CH3. Furthermore, immunization with live bacteria of the mutant strain RAΔ604 protected 87.5% ducks from challenge with R. anatipestifer serotype 1 strain WJ4, indicating that the mutant strain RAΔ604 could be used as a potential vaccine candidate in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.