STOX1 is a transcription factor that is implicated in the high prevalence of human gestational diseases. It has been studied in various types of gestational diseases using different molecular and cellular biological technologies. However, the effect and detailed mechanism of storkhead box 1 (STOX1) in recurrent spontaneous abortion (RSA) remain unknown. This study aimed to explore the effect and detailed mechanism of STOX1 in human trophoblast cells. The result showed that downregulation of STOX1 by short hairpin RNA (shRNA) led to a decrease in proliferation and migration in HTR‐8/SVneo cells, while it induced the apoptosis of HTR‐8/SVneo cells. Moreover, the result showed that trophoblast cells expressed lower levels of pAKT and p85 subunits after treatment with STOX1 shRNA when compared with control. However, overexpression of STOX1 obviously increased the pAKT and p85 protein expressions. Transfection of pcDNA‐AKT plasmid increased cell proliferation and migration in HTR‐8/SVneo cells while suppressed the apoptosis of HTR‐8/SVneo cells. Furthermore, inhibition of the PI3K/Akt pathway by a specific inhibitor promoted cell apoptosis and aggravatedly suppressed cell proliferation and migration of HTR‐8/SVneo cells. On the other hand, upregulation of the PI3K/Akt pathway could increase the relative expression level of Bcl‐2 and decrease the relative expression levels of Bax and Bim, while inhibition of the PI3K/Akt pathway led to adverse results. Our results demonstrated that inhibition of STOX1 could suppress trophoblast cell proliferation and migration, while promote apoptosis through inhibiting the PI3K/Akt signaling pathway. These findings might provide a new fundamental mechanism for regulating RSA and could be used to prevent and treat RSA in clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.