Limited by computing resources of embedded devices, there are problems in the field of fabric defect detection, including small defect size, extremely unbalanced aspect ratio of defect size, and slow detection speed. To address these problems, a sliding window multihead self-attention mechanism is proposed for the detection of small targets, and the Swin Transformer module is introduced to replace the main module in the original YOLOv5 algorithm. First, to reduce the distance between several scales, the weighted bidirectional feature network is employed on embedded devices. In addition, it is helpful to improve the perception of small-target faults by incorporating a detection layer to achieve four-scale detection. At last, to improve the learning of positive sample instances and lower the missed detection rate, the generalized focal loss function is finally implemented on YOLOv5. Experimental results show that the accuracy of the improved algorithm on the fabric dataset reaches 85.6%, and the mAP is increased by 4.2% to 76.5%, which meets the requirements for real-time detection on embedded devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.