Neonates, especially those born prematurely, are at high risk of morbidity and mortality from sepsis. Multiple factors, including prematurity, invasive life-saving medical interventions, and immaturity of the innate immune system, put these infants at greater risk of developing infection. Although advanced neonatal care enables us to save even the most preterm neonates, the very interventions sustaining those who are hospitalized concurrently expose them to serious infections due to common nosocomial pathogens, particularly coagulase-negative staphylococci bacteria (CoNS). Moreover, the health burden from infection in these infants remains unacceptably high despite continuing efforts. In this paper, we review the epidemiology, immunological risk factors, diagnosis, prevention, treatment, and outcomes of neonatal infection due to the predominant neonatal pathogen CoNS.
BackgroundAlzheimer’s Disease (AD), characterized by accumulation of beta-amyloid (Aβ) plaques in the brain, can be caused by age-related failures to clear Aβ from the brain through pathways that involve the cerebrovasculature. Vascular risk factors are known to increase AD risk, but less is known about potential protective factors. We hypothesize that high-density lipoproteins (HDL) may protect against AD, as HDL have vasoprotective properties that are well described for peripheral vessels. Epidemiological studies suggest that HDL is associated with reduced AD risk, and animal model studies support a beneficial role for HDL in selectively reducing cerebrovascular amyloid deposition and neuroinflammation. However, the mechanism by which HDL may protect the cerebrovascular endothelium in the context of AD is not understood.MethodsWe used peripheral blood mononuclear cell adhesion assays in both a highly novel three dimensional (3D) biomimetic model of the human vasculature composed of primary human endothelial cells (EC) and smooth muscle cells cultured under flow conditions, as well as in monolayer cultures of ECs, to study how HDL protects ECs from the detrimental effects of Aβ.ResultsFollowing Aβ addition to the abluminal (brain) side of the vessel, we demonstrate that HDL circulated within the lumen attenuates monocyte adhesion to ECs in this biofidelic vascular model. The mechanism by which HDL suppresses Aβ-mediated monocyte adhesion to ECs was investigated using monotypic EC cultures. We show that HDL reduces Aβ-induced PBMC adhesion to ECs independent of nitric oxide (NO) production, miR-233 and changes in adhesion molecule expression. Rather, HDL acts through scavenger receptor (SR)-BI to block Aβ uptake into ECs and, in cell-free assays, can maintain Aβ in a soluble state. We confirm the role of SR-BI in our bioengineered human vessel.ConclusionOur results define a novel activity of HDL that suppresses Aβ-mediated monocyte adhesion to the cerebrovascular endothelium.Electronic supplementary materialThe online version of this article (doi:10.1186/s13024-017-0201-0) contains supplementary material, which is available to authorized users.
Gut microbial community properties of mammals are thought to be partly shaped by a combination of host immunity and environmental factors, but their relative importance is not firmly established. To address this gap, we first characterized the faecal bacteria of mice with a functioning immune system (wild-type, WT), mice with defective immune responses (CD45), mice lacking an adaptive immune system (RAG), and mice with both immune dysfunctions (45RAG). Using fingerprinting of 16S rRNA genes, we observed significant differences in gut microbiota composition across all mouse strains (P < 0.001) and identified several mouse strain-specific genera via pyrosequencing, including Turicibacter sp. (in WT mice) and Allobaculum sp. (in CD45-deficient animals). To define the role of the host immune system in constraining gut microbiota stability after perturbation, we cohoused CD45-deficient and WT mice and monitored gut bacterial community dynamics during 8 weeks. Cohousing caused the WT bacterial communities to become indistinguishable from those of CD45 mice (P > 0.05). Time-series analysis indicated that the communities of cohoused mice changed directionally as opposed to the relatively stable communities of non-cohoused controls. When we considered only taxonomic membership, it was the communities of CD45 non-cohoused mice that experienced the highest rate of change. Rather than be governed by fluctuations in the relative abundance of taxa, we suggest that CD45-regulated immune responses either are stimulated by the presence of bacteria per se or promote temporal stability by selecting for the occurrence of specific taxa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.