An instance of a random constraint satisfaction problem defines a random subset S (the set of solutions) of a large product space X N (the set of assignments). We consider two prototypical problem ensembles (random k-satisfiability and q-coloring of random regular graphs) and study the uniform measure with support on S. As the number of constraints per variable increases, this measure first decomposes into an exponential number of pure states (''clusters'') and subsequently condensates over the largest such states. Above the condensation point, the mass carried by the n largest states follows a Poisson-Dirichlet process. For typical large instances, the two transitions are sharp. We determine their precise location. Further, we provide a formal definition of each phase transition in terms of different notions of correlation between distinct variables in the problem. The degree of correlation naturally affects the performances of many search/sampling algorithms. Empirical evidence suggests that local Monte Carlo Markov chain strategies are effective up to the clustering phase transition and belief propagation up to the condensation point. Finally, refined message passing techniques (such as survey propagation) may also beat this threshold.message passing algorithms ͉ phase transitions ͉ random graphs
Glassy systems are characterized by an extremely sluggish dynamics without any simple sign of long range order. It is a debated question whether a correct description of such phenomenon requires the emergence of a large correlation length. We prove rigorous bounds between length and time scales implying the growth of a properly defined length when the relaxation time increases. Our results are valid in a rather general setting, which covers finite-dimensional and mean field systems.As an illustration, we discuss the Glauber (heat bath) dynamics of p-spin glass models on random regular graphs. We present the first proof that a model of this type undergoes a purely dynamical phase transition not accompanied by any thermodynamic singularity.
We revisit the derivation of the density of states of sparse random matrices. We derive a recursion relation that allows one to compute the spectrum of the matrix of incidence for finite trees that determines completely the low concentration limit. Using the iterative scheme introduced by Biroli and Monasson [J. Phys. A 32, L255 (1999)] we find an approximate expression for the density of states expected to hold exactly in the opposite limit of large but finite concentration. The combination of the two methods yields a very simple geometric interpretation of the tails of the spectrum. We test the analytic results with numerical simulations and we suggest an indirect numerical method to explore the tails of the spectrum.
We study the set of solutions of random k-satisfiability formulae through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substantially this picture by: (i) determining the precise location of the clustering transition; (ii) uncovering a second 'condensation' phase transition in the structure of the solution set for k ≥ 4. These results both follow from computing the large deviation rate of the internal entropy of pure states. From a technical point of view our main contributions are a simplified version of the cavity formalism for special values of the Parisi replica symmetry breaking parameter m (in particular for m = 1 via a correspondence with the tree reconstruction problem) and new large-k expansions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.