Major depressive disorder (MDD) is a common mental disorder associated with a significant negative impact on quality of life, morbidity/mortality, and cognitive function. Individuals who suffer with MDD display lower serum/plasmatic total antioxidant potentials and reduced brain GSH levels. Also, F2-isoprostanes circulatory levels are increased in MDD subjects and are correlated with the severity of depressive symptoms. Urinary excretion of 8-OHdG seems to be higher in patients with MDD compared to healthy controls. Despite the fact that antidepressant drugs have been used for more than 50 years, their mechanism of action is still not fully understood. This paper examines preclinical (in vitro and animal model) and clinical literature on oxidative/antioxidant effects associated with antidepressant agents and discusses their potential antioxidant-related effects in the treatment of MDD. Substantial data support that MDD seems to be accompanied by elevated levels of oxidative stress and that antidepressant treatments may reduce oxidative stress. These studies suggest that augmentation of antioxidant defences may be one of the mechanisms underlying the neuroprotective effects of antidepressants in the treatment of MDD.
While several studies have been conducted on the antioxidant properties of the beta-amino acid taurine, these studies all used concentrations lower than what is found physiologically. This study investigates the scavenging and antioxidant properties of physiological taurine concentrations against different reactive species. No reactivity between taurine and hydrogen peroxide was found; however, taurine exhibited significant scavenging potential against peroxyl radical, nitric oxide, and superoxide donors. This study also evaluated if taurine was able to minimize the in vitro CuZn-superoxide dismutase damage (SOD) induced by peroxynitrite. Taurine prevented both the formation of nitrotyrosine adducts and the decrease in SOD activity caused by peroxynitrite. In addition, taurine prevented the ex vivo damage caused by tert-butyl hydroperoxide in rat liver slices. These experimental data show that taurine, at different physiological concentrations efficiently scavenges many reactive oxygen and nitrogen species. This finding supports the hypothesis that the antioxidant properties of taurine may be critical for the maintenance of cellular functions, and it suggests a more important function of taurine that requires further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.