BackgroundEvidences have been highlighted the relationship among metabolic syndrome, chronic low-grade inflammation, oxidative stress and several diseases. In this sense, the aim of this study was to investigate the effects of aerobic exercise training on oxidative stress and inflammatory parameters on women with metabolic syndrome (MS).MethodsTwenty-three untrained women (51.86 ± 6.58 years old, BMI 30.8 ± 4.3 kg/m2) completed a 12-week treadmill exercise training, without modifications on dietary pattern. Advanced oxidation protein products (AOPP), thiobarbituric acid-reactive substances (TBARS), total thiol content (T-SH) and nitrite and nitrate (NOx) levels were assessed in plasma while the levels of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ) were evaluated in the serum. The RNA expression (mRNA) of IL-1β, IL-10, TNF-α, IFN-γ, insulin receptor substrate 2 (IRS-2) and matrix metalloproteinase-9 (MMP-9) were performed inperipheral blood mononuclear cells (PBMC) of a subset with eight women with MS using real real-time polymerase chain reaction (qPCR).ResultsThe intervention resulted in decreased serum levels of IL-1β, IL-6, TNF-α, IFN-γ, AOPP and TBARS, besides increased levels of IL-10 and T-SH (P < 0.001). NOx concentrations were unchanged, similarly to mRNA expressions quantified in PBMC.ConclusionsTwelve weeks of AT improved systemic oxidative stress and inflammatory biomarkers in women with MS, although PBMC mRNA expression for inflammatory pathways appeared to be unchanged. This may indicate that AT induced beneficial effects not only in physical fitness but also on health promotion through decreased oxidative damage and proinflammatory status.
The relevance of reactive oxygen species (ROS) production relies on the dual role shown by these molecules in aerobes. ROS are known to modulate several physiological phenomena, such as immune response and cell growth and differentiation; on the other hand, uncontrolled ROS production may cause important tissue and cell damage, such as deoxyribonucleic acid oxidation, lipid peroxidation, and protein carbonylation. The manganese superoxide dismutase (MnSOD) antioxidant enzyme affords the major defense against ROS within the mitochondria, which is considered the main ROS production locus in aerobes. Structural and/or functional single nucleotide polymorphisms (SNP) within the MnSOD encoding gene may be relevant for ROS detoxification. Specifically, the MnSOD Ala16Val SNP has been shown to alter the enzyme localization and mitochondrial transportation, affecting the redox status balance. Oxidative stress may contribute to the development of type 2 diabetes, cardiovascular diseases, various inflammatory conditions, or cancer. The Ala16Val MnSOD SNP has been associated with these and other chronic diseases; however, inconsistent findings between studies have made difficult drawing definitive conclusions. Environmental factors, such as dietary antioxidant intake and exercise have been shown to affect ROS metabolism through antioxidant enzyme regulation and may contribute to explain inconsistencies in the literature. Nevertheless, whether environmental factors may be associated to the Ala16Val genotypes in human diseases still needs to be clarified.
Background and AimsAlthough acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts.MethodsWistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed.ResultsTrained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group.ConclusionsSwimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.