Data mining algorithms to find association rules are an important tool to extract knowledge from databases. However, these algorithms produce an enormous amount of rules, many of which could be redundant or irrelevant for a specific decision-making process. Also, the use of previous knowledge and hypothesis are not considered by these algorithms. On the other hand, most existing data mining approaches look for patterns in a single data table, ignoring the relations presented in relational databases. The contribution of this paper is the proposition of a multirelational data mining algorithm based on association rules, called TBMR-Radix, which considers previous knowledge and hypothesis through the using of the Templates technique. Applying this approach over two real databases, we were able to reduce the number of generated rules, use the existing knowledge about the data and reduce the waste of computational resources while processing. Our experiments show that the developed algorithm was also able to perform in a multi-relational environment, while the MR-Radix, that does not use Templates technique, was not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.