Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened >8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition.
BackgroundParental consanguinity is a risk factor for congenital heart disease (CHD) worldwide, suggesting that a recessive inheritance model may contribute substantially to CHD. In Bangalore, India, uncle-niece and first cousin marriages are common, presenting the opportunity for an international study involving consanguinity mapping of structural CHD. We sought to explore the recessive model of CHD by conducting a genome-wide linkage analysis utilizing high-density oligonucleotide microarrays and enrolling 83 CHD probands born to unaffected consanguineous parents.Methodology/Principal FindingsIn this linkage scan involving single nucleotide polymorphism (SNP) markers, the threshold for genome-wide statistical significance was set at the standard log-of-odds (LOD) score threshold of 3.3, corresponding to 1995∶1 odds in favor of linkage. We identified a maximal single-point LOD score of 3.76 (5754∶1 odds) implicating linkage of CHD with the major allele (G) of rs1055061 on chromosome 14 in the HOMEZ gene, a ubiquitously expressed transcription factor containing leucine zipper as well as zinc finger motifs. Re-sequencing of HOMEZ exons did not reveal causative mutations in Indian probands. In addition, genotyping of the linked allele (G) in 325 U.S. CHD cases revealed neither genotypic nor allele frequency differences in varied CHD cases compared to 605 non-CHD controls.Conclusions/SignificanceDespite the statistical power of the consanguinity mapping approach, no single gene of major effect could be convincingly identified in a clinically heterogeneous sample of Indian CHD cases born to consanguineous parents. However, we are unable to exclude the possibility that noncoding regions of HOMEZ may harbor recessive mutations leading to CHD in the Indian population. Further research involving large multinational cohorts of patients with specific subtypes of CHD is needed to attempt replication of the observed linkage peak on chromosome 14. In addition, we anticipate that a targeted re-sequencing approach may complement linkage analysis in future studies of recessive mutation detection in CHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.