We examine immunostaining experimental data for the formation of stripe 2 of even-skipped (eve) transcripts on D. melanogaster embryos. An estimate of the factor converting immunofluorescence intensity units into molecular numbers is given. The analysis of the eve dynamics at the region of stripe 2 suggests that the promoter site of the gene has two distinct regimes: an earlier phase when it is predominantly activated until a critical time when it becomes mainly repressed. That suggests proposing a stochastic binary model for gene transcription on D. melanogaster embryos. Our model has two random variables: the transcripts number and the state of the source of mRNAs given as active or repressed. We are able to reproduce available experimental data for the average number of transcripts. An analysis of the random fluctuations on the number of eves and their consequences on the spatial precision of stripe 2 is presented. We show that the position of the anterior or posterior borders fluctuate around their average position by ∼1% of the embryo length, which is similar to what is found experimentally. The fitting of data by such a simple model suggests that it can be useful to understand the functions of randomness during developmental processes.
Recent experimental data on the transcription dynamics of eve gene stripe two formation of Drosophila melanogaster embryos occurs in bursts of multiple sizes and durations. That has motivated the proposition of a transcription model having multiple ON states for the promoter of the eve gene each of them characterized by different synthesis rate. To understand the role of multiple ON states on gene transcription we approach the exact solutions for a two state stochastic model for gene transcription in D. melanogaster embryos and derive its bursting limit. Simulations based on the Gillespie algorithm at the bursting limit show the occurrence of bursts of multiple sizes and durations. Based on our theoretical approach, we interpret the aforementioned experimental data as a demonstration of the intrinsic stochasticity of the transcriptional processes in fruit fly embryos. Then, we conceive the experimental arrangement to determine when gene transcription has multiple ON promoter state in a noisy environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.