INTRODUÇÃO: O potencial de ação (PA) origina-se graças a uma perturbação do estado de repouso da membrana celular, com consequente fluxo de íons, por meio da membrana e alteração da concentração iônica nos meios intra e extracelular. OBJETIVOS: Sintetizar o conhecimento científico acumulado até o presente sobre o potencial de ação neural e o seu processo de adaptação sob aplicação de um estímulo constante. MATERIAIS E MÉTODOS: Busca realizada nas bases Springer, ScienceDirect, PubMed, IEEE Xplore, Google Acadêmico, Portal de Periódicos da Capes, além de livros referentes ao assunto. O idioma de preferência selecionado foi o inglês, com as keywords: action potential; adaptation; accommodation; rheobase; chronaxy; nerve impulse. Efetuou-se a procura de artigos com uma janela de tempo de 1931 a 2010 e livros de 1791 a 2007. RESULTADOS: Dos trabalhos selecionados, foram extraídas informações a respeito dos seguintes tópicos: potencial de ação e suas fases; condução nervosa; reobase; cronaxia; acomodação; e adaptação neuronal. CONCLUSÃO: Um estímulo que crie PA, se aplicado de maneira constante, pode reduzir a frequência de despolarizações em função do tempo e, consequentemente, adaptar a célula. O tempo que a célula demora, na ausência de estímulos, para recuperar sua frequência original é definido como desadaptação.
Introduction: The evaluation of muscular tissue condition can be accomplished with mechanomyography (MMG), a technique that registers intramuscular mechanical waves produced during a fi ber's contraction and stretching that are sensed or interfaced on the skin surface. Objective: Considering the scope of MMG measurements and recent advances involving the technique, the goal of this paper is to discuss mechanomyography updates and discuss its applications and potential future applications. Methods: Forty-three MMG studies were published between the years of 1987 and 2013. Results: MMG sensors are developed with different technologies such as condenser microphones, accelerometers, laser-based instruments, etc. Experimental protocols that are described in scientifi c publications typically investigated the condition of the vastus lateralis muscle and used sensors built with accelerometers, third and fourth order Butterworth fi lters, 5-100Hz frequency bandpass, signal analysis using Root Mean Square (RMS) (temporal), Median Frequency (MDF) and Mean Power Frequency (MPF) (spectral) features, with epochs of 1 s. Conclusion: Mechanomyographic responses obtained in isometric contractions differ from those observed during dynamic contractions in both passive and functional electrical stimulation evoked movements. In the near future, MMG features applied to biofeedback closed-loop systems will help people with disabilities, such as spinal cord injury or limb amputation because they may improve both neural and myoelectric prosthetic control. Muscular tissue assessment is a new application area enabled by MMG; it can be useful in evaluating the muscular tonus in anesthetic blockade or in pathologies such as myotonic dystrophy, chronic obstructive pulmonary disease, and disorders including dysphagia, myalgia and spastic hypertonia. New research becomes necessary to improve the effi ciency of MMG systems and increase their application in rehabilitation, clinical and other health areas.
Regiões distintas do sistema nervoso central ativam o sistema neuromuscular. Atualmente, utilizam-se sistemas artificiais para mimetizarem as ações fisiológicas perdidas devido a uma lesão neurológica. A estimulação elétrica de tecidos humanos in vivo, como forma de tratamento, desenvolveu-se por meio de pesquisas e do aprimoramento da tecnologia. Pessoas que sofreram lesão medular podem perder parcial ou totalmente a função motora de uma determinada região corporal. A aplicação de estimulação elétrica no tecido neuromuscular gera movimentação artificial que pode desenvolver uma melhora de longo prazo através da plasticidade neuronal. A estimulação elétrica funcional pode utilizar variados parâmetros, eletrodos e locais de aplicação. Quando o ajuste e correção dos parâmetros estimulatórios ocorre manualmente, tem-se um sistema em malha aberta, quando ocorre automaticamente, o sistema denomina-se controle em malha fechada. Ambas as formas contribuem para a reabilitação física de pacientes acometidos por lesão neuronal. Os sistemas em malha fechada apresentam vantagens em relação aos de malha aberta, como a correção automática dos parâmetros de estimulação. Assim, com o desenvolvimento de estratégias de controle e a criação de interfaces amigáveis, a ativação do conjunto de equipamentos e softwares que viabilizarão o movimento artificial poderá ser efetuada pelo próprio usuário, assemelhando-se ao sistema fisiológico humano.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.