Recent meta-analysis indicate that coffee consumption may reduce the risk for digestive tract cancers (oral, esophageal, gastric and colorectal) and, especially, liver cancer. Coffee bean-derived beverages, such as the widely-consumed espresso and "common" filtered brews, are commodities of remarkable historical, cultural and economic importance globally. These drinks display rich and variable chemical composition, depending on many factors that vary from "seeding to serving". The alkaloids caffeine and trigonelline, and the polyphenol chlorogenic acid seem to be some of the most important bioactive organic compounds of these beverages, displaying high levels in both espresso and common brews and/or increased bioavailability after consumption. Thus, we proposed a comprehensive literature overview of current knowledge on the effects of coffee beverages and their highly bioavailable compounds, describing: 1) recent epidemiological and experimental findings highlighting the beneficial effects against gastrointestinal and liver carcinogenesis; and 2) the main molecular mechanisms in these in vitro and in vivo bioassays. Findings predominantly address protective effects of coffee and its most common and bioavailable compounds individually against gastrointestinal and liver cancer development. Our review underscores the complex effects of coffee on carcinogenesis, considering that beneficial effects are not limited to the whole beverage or selected compounds. Thus, this review should provide new insights of clinical and translational significance for further mechanistic investigations.
This study investigated the protective effect of spray-dried açaí powder (AP) intake on colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) in male Wistar rats. After 4 weeks of DMH administrations, the groups were fed with standard diet, a diet containing 2.5% or 5.0% AP or a diet containing 0.2% N-acetylcysteine (NAC) for 10 weeks, using aberrant crypt foci (ACF) as the endpoint. Additionally, two groups were fed with standard diet or a diet containing 5.0% AP for 20 weeks, using colon tumors as the endpoint. In ACF assay, a reduction in the number of aberrant crypts (ACs) and ACF (1-3 AC) were observed in the groups fed with 5.0% AP (37% AC and 47% ACF inhibition, p=0.036) and 0.2% NAC (39% AC and 41% ACF inhibition, p=0.042). In tumor assay, a reduction in the number of invasive tumors (p<0.005) and tumor multiplicity (p=0.001) was observed in the group fed with 5.0% AP. Also, a reduction in tumor Ki-67 cell proliferation (p=0.003) and net growth index (p=0.001) was observed in the group fed with 5.0% AP. Therefore the findings of this study indicate that AP feeding may reduce the development of chemically-induced rat colon carcinogenesis.
This study evaluated the possible protective effects of lyophilized açaí pulp (AP) in a colitis-associated carcinogenesis (CAC) rat model and the modifying effect of cyanidin 3-rutinoside (C3R) on the motility of RKO colon adenocarcinoma cells, using the wound healing assay. Male Wistar rats were induced to develop CAC using 1,2-dimethylhydrazine (DMH) and 2,4,6-trinitrobenzene acid (TNBS). Animals were randomly assigned to different groups that received basal diet or basal diet supplemented with 5.0% or 7.5% lyophilized AP. The findings indicate: 1) C3R (25 μM) has the potential to reduce RKO cell motility in vitro; 2) ingestion of lyophilized AP reduces the total number of aberrant crypt foci (ACF), ACF multiplicity, tumor cell proliferation and incidence of tumors with high grade dysplasia; 3) AP increases the gene expression of negative regulators of cell proliferation such as Dlc1 and Akt3, as well as inflammation (Ppara). Thus, lyophilized AP could exert a potential antitumor activity.
Although a plethora of signaling pathways are known to drive the activation of hepatic stellate cells in liver fibrosis, the involvement of connexin-based communication in this process remains elusive. Connexin43 expression is enhanced in activated hepatic stellate cells and constitutes the molecular building stone of hemichannels and gap junctions. While gap junctions support intercellular communication, and hence the maintenance of liver homeostasis, hemichannels provide a circuit for extracellular communication and are typically opened by pathological stimuli, such as oxidative stress and inflammation. The present study was set up to investigate the effects of inhibition of connexin43-based hemichannels and gap junctions on liver fibrosis in mice. Liver fibrosis was induced by administration of thioacetamide to Balb/c mice for eight weeks. Thereafter, mice were treated for two weeks with TAT-Gap19, a specific connexin43 hemichannel inhibitor, or carbenoxolone, a general hemichannel and gap junction inhibitor. Subsequently, histopathological analysis was performed and markers of hepatic damage and functionality, oxidative stress, hepatic stellate cell activation and inflammation were evaluated. Connexin43 hemichannel specificity of TAT-Gap19 was confirmed in vitro by fluorescence recovery after photobleaching analysis and the measurement of extracellular release of adenosine-5′-triphosphate. Upon administration to animals, both TAT-Gap19 and carbenoxolone lowered the degree of liver fibrosis accompanied by superoxide dismutase overactivation and reduced production of inflammatory proteins, respectively. These results support a role of connexin-based signaling in the resolution of liver fibrosis, and simultaneously demonstrate the therapeutic potential of TAT-Gap19 and carbenoxolone in the treatment of this type of chronic liver disease.
Sheep dairy products containing prebiotic and probiotic ingredients may have health-promoting properties. Thus, this study evaluated the effects of sheep milk ice cream [conventional full-fat (CONV), full-fat enriched with probiotic (PROB, 100 mg % wt/wt of Lacticaseibacillus casei 01), or nonfat synbiotic (SYNB, Lacticaseibacillus casei 01 and inulin, 10% wt/wt)] on carcinogen-induced colonic crypt cytotoxicity and premalignant lesion development. Male Swiss mice received 2 doses of colon carcinogen azoxymethane (AOM, 15 mg/kg of body weight) at wk 3 and 4. Two weeks before and during AOM administrations (4 wk) mice were treated with CONV, PROB, or SYNB by gavage (10 mL/kg). Mice were euthanized at wk 4 or 25 (n = 5 or 10 mice/group, respectively). At wk 4, a significant reduction in micronucleated colonocytes was observed in PROB and SYNB groups, and a significant decrease in both p53 expression and apoptosis indexes in colonic crypts was observed in SYNB group. At wk 25, both PROB and SYNB interventions reduced the mean number of colonic premalignant lesions. However, only SYNB group showed lower incidence and number of high-grade premalignant lesions in the colonic mucosa. These findings indicate that PROB or SYNB sheep milk ice cream, especially SYNB intervention, can reduce chemically induced mouse colon carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.