Interaction-Transformation (IT) is a new representation for Symbolic Regression that reduces the space of solutions to a set of expressions that follow a specific structure. The potential of this representation was illustrated in prior work with the algorithm called SymTree. This algorithm starts with a simple linear model and incrementally introduces new transformed features until a stop criterion is met. While the results obtained by this algorithm were competitive with the literature, it had the drawback of not scaling well with the problem dimension. This paper introduces a mutation only Evolutionary Algorithm, called ITEA, capable of evolving a population of IT expressions. One advantage of this algorithm is that it enables the user to specify the maximum number of terms in an expression. In order to verify the competitiveness of this approach, ITEA is compared to linear, nonlinear and Symbolic Regression models from the literature. The results indicate that ITEA is capable of finding equal or better approximations than other Symbolic Regression models while being competitive to state-of-the-art non-linear models. Additionally, since this representation follows a specific structure, it is possible to extract the importance of each original feature of a data set as an analytical function, enabling us to automate the explanation of any prediction. In conclusion, ITEA is competitive when comparing to regression models with the additional benefit of automating the extraction of additional information of the generated models.
In this paper we propose a new time difference delay of arrival technique based on the semblance multichannel coherency function for the problem of sound source localization. The proposed algorithm was tested on recordings from an Unmanned Aerial Vehicle (UAV) equipped with an array of 8 microphones, for estimating the azimuth and elevation angles of a speech based source. Our results shown that the semblance method has proven to have a good performance, obtaining good results regardless of the ego noise even in cases where the signalto-noise ratio (SNR) was very low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.