Depth completion, the technique of estimating a dense depth image from sparse depth measurements, has a variety of applications in robotics and autonomous driving. However, depth completion faces 3 main challenges: the irregularly spaced pattern in the sparse depth input, the difficulty in handling multiple sensor modalities (when color images are available), as well as the lack of dense, pixel-level ground truth depth labels. In this work, we address all these challenges. Specifically, we develop a deep regression model to learn a direct mapping from sparse depth (and color images) to dense depth. We also propose a self-supervised training framework that requires only sequences of color and sparse depth images, without the need for dense depth labels. Our experiments demonstrate that our network, when trained with semi-dense annotations, attains state-of-theart accuracy and is the winning approach on the KITTI depth completion benchmark 2 at the time of submission. Furthermore, the self-supervised framework outperforms a number of existing solutions trained with semidense annotations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.