Landslide hazards affect the security of human life and property. Mapping the spatial distribution of landslide hazard risk is critical for decision-makers to implement disaster prevention measures. This study aimed to predict and zone landslide hazard risk, using Guixi County in eastern Jiangxi, China, as an example. An integrated dataset composed of 21 geo-information layers, including lithology, rainfall, altitude, slope, distances to faults, roads and rivers, and thickness of the weathering crust, was used to achieve the aim. Non-digital layers were digitized and assigned weights based on their landslide propensity. Landslide locations and non-risk zones (flat areas) were both vectorized as polygons and randomly divided into two groups to create a training set (70%) and a validation set (30%). Using this training set, the Random Forests (RF) algorithm, which is known for its accurate prediction, was applied to the integrated dataset for risk modeling. The results were assessed against the validation set. Overall accuracy of 91.23% and Kappa Coefficient of 0.82 were obtained. The calculated probability for each pixel was consequently graded into different zones for risk mapping. Hence, we conclude that landslide risk zoning using the RF algorithm can serve as a pertinent reference for local government in their disaster prevention and early warning measures.
Landslides are one of the major geohazards threatening human society. The objective of this study was to conduct a landslide hazard susceptibility assessment for Ruijin, Jiangxi, China, and to provide technical support to the local government for implementing disaster reduction and prevention measures. Machine learning approaches, e.g., random forests (RFs) and support vector machines (SVMs) were employed and multiple geo-environmental factors such as land cover, NDVI, landform, rainfall, lithology, and proximity to faults, roads, and rivers, etc., were utilized to achieve our purposes. For categorical factors, three processing approaches were proposed: simple numerical labeling (SNL), weight assignment (WA)-based and frequency ratio (FR)-based. Then 19 geo-environmental factors were respectively converted into raster to constitute three 19-band datasets, i.e., DS1, DS2, and DS3 from three different processes. Then, 155 observed landslides that occurred in the past decades were vectorized, among which 70% were randomly selected to compose a training set (TS1) and the remaining 30% to form a validation set (VS1). A number of non-landslide (no-risk) samples distributed in the whole study area were identified in low slope (<1–3°) zones such as urban areas and croplands, and also added to the TS1 and VS1 in the same ratio. For comparison, we used the FR approach to identify the no-risk samples in both flat and non-flat areas, and merged them into the field-observed landslides to constitute another pair of training and validation sets (TS2 and VS2) using the same ratio of 7:3. The RF algorithm was applied to model the probability of the landslide occurrence using DS1, DS2, and DS3 as predictive variables and TS1 and TS2 for training to obtain the SNL-based, WA-based, and FR-based RF models, respectively. Verified against VS1 and VS2, the three models have similar overall accuracy (OA) and Kappa coefficient (KC), which are 89.61%, 91.47%, and 94.54%, and 0.7926, 0.8299, and 0.8908, respectively. All of them are much better than the three models obtained by SVM algorithm with OA of 81.79%, 82.86%, and 83%, and KC of 0.6337, 0.655, and 0.660. New case verification with the recent 26 landslide events of 2017–2020 revealed that the landslide susceptibility map from WA-based RF modeling was able to properly identify the high and very high susceptibility zones where 23 new landslides had occurred, and performed better than the SNL-based and FR-based RF modeling, though the latter has a slightly higher OA and KC. Hence, we concluded that all three RF models achieve reasonable risk prediction, but WA-based and FR-based RF modeling deserves a recommendation for application elsewhere. The results of this study may serve as reference for the local authorities in prevention and early warning of landslide hazards.
Reliable prediction of landslide occurrence is important for hazard risk reduction and prevention. Taking Guixi in northeast Jiangxi as an example, this research aimed to conduct such a landslide risk assessment using a multiple logistic regression (MLR) algorithm. Field-investigated landslides and non-landslide sites were converted into polygons. We randomly generated 50,000 sampling points to intersect these polygons and the intersected points were divided into two parts, a training set (TS) and a validation set (VT) in a ratio of 7 to 3. Thirteen geo-environmental factors, including elevation, slope, and distance from roads were employed as hazard-causative factors, which were intersected by the TS to create the random point (RP)-based dataset. The next step was to compute the certainty factor (CF) of each factor to constitute a CF-based dataset. MLR was applied to the two datasets for landslide risk modeling. The probability of landslides was then calculated in each pixel, and risk maps were produced. The overall accuracy of these two models versus VS was 91.5% and 90.4% with a Kappa coefficient of 0.814 and 0.782, respectively. The RP-based MLR modeling achieved more reliable predictions and its risk map seems more plausible for providing technical support for implementing disaster prevention measures in Guixi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.