Covalent grafting of acrylate-functionalized single-walled carbon nanotubes (SWCNTs) with poly(methyl methacrylate) was accomplished by emulsion polymerization using sodium dodecylbenzene sulfonate (SDBS) as an emulsifying agent. The acrylate-functionalized SWCNTs with polymerizable vinyl groups on their surfaces were prepared by a reaction sequence involving oxidation, hydroxylation, and vinylation reactions. The as-prepared acrylate-functionalized SWCNTs were then dispersed in water in the presence of SDBS, resulting in the exfoliation of SWCNTs into small bundles of approximately 2−6 tubes and the simultaneous formation of SWCNT micelles. Subsequent addition of methyl methacrylate resulted in its absorption into the SWCNT micelles due to the interactions between the monomer and the nanotube surface. Grafting copolymerization of methyl methacrylate with the vinyl groups on the SWCNT surface was subsequently performed in the micelles to produce poly(methyl methacrylate)-functionalized SWCNTs. Thermogravimetric analysis indicated that the average polymer content in the functionalized SWCNTs ranged from 42 to 63 wt %, depending on the time of monomer pre-emulsion.
In this study, we presented the preparation of β-cyclodextrin (β-CD) covalently functionalized single-walled carbon nanotubes (SWCNTs) and its application in modifying the solid glass carbon electrode (GCE). Cyclic voltammetry (CV) method was employed to evaluate the performance of the modified GCE. Solubility experiment indicated the conjugation of SWCNTs and β-CD, SWCNTs-β-CD with 8 wt% β-CD content could be well dispersed in water. High-resolution transmission electron microscopy (HRTEM) demonstrated that the aggregated SWCNTs bundle were effectively exfoliated to small bundle, even individual tube. The β-CD component was grafted on the side walls as well as tips of SWCNTs, and the grafted β-CD component was not uniformly coated on the surface of SWCNTs. The CV measurements indicated the performance of the GCE modified by SWCNTs-β-CD was better than that of the GCE modified by the hybrid of SWCNTs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.