Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition-deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/ or to the physical displacement of antennas from photosystem II.
Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.L ight is essential for photosynthesis, but absorption of excess light energy is detrimental. To avoid photodamage, photosynthetic light harvesting is regulated by nonphotochemical quenching (NPQ), which allows dissipation of harmful excess energy as heat through its qE (energy-dependent nonphotochemical quenching) component (1-6). Specialized members of the light harvesting complex (LHC) protein family, such as Photosystem II Subunit S (PSBS) in higher plants or members of the LHC Stress-Related (LHCSR) family in mosses and algae, are central to qE (7-11). Protonation of key residues in these proteins triggers qE in response to the acidification of the thylakoid lumen, which is coupled to photosynthetic electron transport (7, 9). Furthermore, the deepoxidation of violaxanthin to zeaxanthin, which is also activated by the acidification of the thylakoid lumen, enhances qE (12). In response to high levels of visible light, LHCSR3 protein accumulation is of major importance for qE capacity in Chlamydomonas reinhardtii (11). The induction of LHCSR3 expression under high light is thought to involve retrograde signaling, from the chloroplast to nuclear gene expression (13), and recent data show that the response is also dependent on the phototropin (PHOT) blue light photoreceptor (14).UV-B radiation is intrinsic to sunlight reaching the earth surface and is potentially damaging to living tissues. UV-B stress tolerance is induced through the specific activation of acclimation responses (15)(16)(17)(18)(19)(20). Plants sense UV-B radiation via the homodimeric UV-B photoreceptor UV Resistance Locus 8 (UVR8) (21-23) that is mainly localized in the cytosol ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.