International audienceTwo different viscoelastic frameworks adapted to large strain rate-dependent response of elastomers are compared; for each approach, a simple model is derived. Within the Finite Linear Viscoelasticity theory, a time convolution integral model based on an extension to solid of the K-BKZ model is proposed. Considering the multiplicative split of the deformation gradient into elastic and inelastic parts, an internal variable model based on a large strain version of the Standard Linear Solid model is considered. In both cases, the strain energy functions involved are chosen neo-Hookean, and then each model possesses three material parameters: two stiffnesses and a viscosity parameter. These parameters are set to ensure the equivalence of the model responses for uniaxial large strain quasi-static and infinitely fast loading conditions, and for uniaxial rate-dependent small strain loading conditions. Considering their responses for different Eulerian strain rates, their differences are investigated with respect to the strain rate; more specifically, both stiffness and dissipative properties are studied. The comparison reveals that these two models differ significantly for intermediate strain rates, and a closing discussion highlights some issues about their foundations and numerical considerations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.