Abstract. The majority of work carried out in the formal methods community throughout the last three decades has (for good reasons) been devoted to special languages designed to make it easier to experiment with mechanized formal methods such as theorem provers, proof checkers and model checkers. In this paper we will attempt to give convincing arguments for why we believe it is time for the formal methods community to shift some of its attention towards the analysis of programs written in modern programming languages. In keeping with this philosophy we have developed a verification and testing environment for Java, called Java PathFinder (JPF), which integrates model checking, program analysis and testing. Part of this work has consisted of building a new Java Virtual Machine that interprets Java bytecode. JPF uses state compression to handle big states, and partial order and symmetry reduction, slicing, abstraction, and runtime analysis techniques to reduce the state space. JPF has been applied to a real-time avionics operating system developed at Honeywell, illustrating an intricate error, and to a model of a spacecraft controller, illustrating the combination of abstraction, runtime analysis, and slicing with model checking.
This paper presents a scalable method to efficiently search for the most likely state trajectory leading to an event given only a simulator of a system. Our approach uses a reinforcement learning formulation and solves it using Monte Carlo Tree Search (MCTS). The approach places very few requirements on the underlying system, requiring only that the simulator provide some basic controls, the ability to evaluate certain conditions, and a mechanism to control the stochasticity in the system. Access to the system state is not required, allowing the method to support systems with hidden state. The method is applied to stress test a prototype aircraft collision avoidance system to identify trajectories that are likely to lead to near mid-air collisions. We present results for both single and multi-threat encounters and discuss their relevance. Compared with direct Monte Carlo search, this MCTS method performs significantly better both in finding events and in maximizing their likelihood.
In this paper we describe the design and implementation of a static array-bound checker for a family of embedded programs: the flight control software of recent Mars missions. These codes are large (up to 280 KLOC), pointer intensive, heavily multithreaded and written in an objectoriented style, which makes their analysis very challenging. We designed a tool called C Global Surveyor (CGS) that can analyze the largest code in a couple of hours with a precision of 80%. The scalability and precision of the analyzer are achieved by using an incremental framework in which a pointer analysis and a numerical analysis of array indices mutually refine each other. CGS has been designed so that it can distribute the analysis over several processors in a cluster of machines. To the best of our knowledge this is the first distributed implementation of static analysis algorithms. Throughout the paper we will discuss the scalability setbacks that we encountered during the construction of the tool and their impact on the initial design decisions.Abstract interpretation, program verification, pointer analysis, array-bound checking, difference-bound matrices
Overview of Technologies BenchmarkedThe experiment tested tools representing three technologies: static analysis, model checking, and runtime analysis; and compared them to conventional methods. The static analysis tool was the commercial PolySpace C-verifier [5]. This tool analyzes a C program without executing it; it focuses on finding errors that lead to run-time faults such as underflow/overflow, non-initialized variables, null pointer de-referencing, and array bound checking. The model checking tool was Java PathFinder (JPF) [6], which is an explicit-state model checker that works directly on Java code. JPF specializes in finding deadlocks, verifying assertions, and checking temporal logic specifications. J P F explores all possible interleavings in multi-threaded programs. The runtime analysis tools were Java Path Explorer (JPaX) [4] and DBRover [3]. JPaX can infer potential concurrency errors in a multi-threaded program by examination of a single execution trace. Amongst the errors detectable are deadlocks and data races. DBRover supports conformance check of an execution trace against a specification written in metric temporal logic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.