Property tuning by fluorination is very effective for a number of purposes, and currently increasingly investigated for aliphatic compounds. An important application is lipophilicity (log P) modulation. However, the determination of log P is cumbersome for non‐UV‐active compounds. A new variation of the shake‐flask log P determination method is presented, enabling the measurement of log P for fluorinated compounds with or without UV activity regardless of whether they are hydrophilic or lipophilic. No calibration curves or measurements of compound masses/aliquot volumes are required. With this method, the influence of fluorination on the lipophilicity of fluorinated aliphatic alcohols was determined, and the log P values of fluorinated carbohydrates were measured. Interesting trends and changes, for example, for the dependence on relative stereochemistry, are reported.
α-Fluoroenamides, potent rigid fluorinated bioisosters of ureas, have been synthesized by a highly regio- and stereo-selective hydrofluorination of ynamides in anhydrous HF. This reaction provides the first general entry to α-fluoroenamides and can easily be applied to a wide range of substrates.
The effect of fluorination on the conformational and hydrogen-bond (HB)-donating properties of a series of benzyl alcohols has been investigated experimentally by IR spectroscopy and theoretically with quantum chemical methods (ab initio (MP2) and DFT (MPWB1K)). It was found that o-fluorination generally resulted in an increase in the HB acidity of the hydroxyl group, whereas a decrease was observed upon o,o′-difluorination. Computational analysis showed that the conformational landscapes of the title compounds are strongly influenced by the presence of o-fluorine atoms. Intramolecular interaction descriptors based on AIM, NCI and NBO analyses reveal that, in addition to an intramolecular OH⋅⋅⋅F interaction, secondary CH⋅⋅⋅F and/or CH⋅⋅⋅O interactions also occur, contributing to the stabilisation of the various conformations, and influencing the overall HB properties of the alcohol group. The benzyl alcohol HB-donating capacity trends are properly described by an electrostatic potential based descriptor calculated at the MPWB1K/6-31+G(d,p) level of theory, provided solvation effects are taken into account for these flexible HB donors.
Fluorination is commonly exercised in compound property optimization. However, the influence of fluorination on hydrogen-bond (HB) properties of adjacent functional groups, as well as the HB-accepting capacity of fluorine itself, is still not completely understood. Although the formation of OH⋅⋅⋅F intramolecular HBs (IMHBs) has been established for conformationally restricted fluorohydrins, such interaction in flexible compounds remained questionable. Herein is demonstrated for the first time—and in contrast to earlier reports—the occurrence of OH⋅⋅⋅F IMHBs in acyclic saturated γ-fluorohydrins, even for the parent 3-fluoropropan-1-ol. The relative stereochemistry is shown to have a crucial influence on the corresponding h1JOH⋅⋅⋅F values, as illustrated by syn- and anti-4-fluoropentan-2-ol (6.6 and 1.9Hz). The magnitude of OH⋅⋅⋅F IMHBs and their strong dependence on the overall molecular conformational profile, fluorination motif, and alkyl substitution level, is rationalized by quantum chemical calculations. For a given alkyl chain, the “rule of shielding” applies to OH⋅⋅⋅F IMHB energies. Surprisingly, the predicted OH⋅⋅⋅F IMHB energies are only moderately weaker than these of the corresponding OH⋅⋅⋅OMe. These results provide new insights of the impact of fluorination of aliphatic alcohols, with attractive perspectives for rational drug design.
A novel and efficient keteniminium-initiated cationic polycyclization is reported. This reaction, which only requires triflic acid or bistriflimide as promoters, affords a straightforward entry to polycyclic nitrogen heterocycles possessing up to three contiguous stereocenters and seven fused cycles. These complex, polycyclic molecules can be obtained in a single operation from readily available ynamides which were shown to be remarkable building blocks for multiple, consecutive cationic transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.