Introduction: In this case study, a client-owned dog with a large pituitary tumor was experimentally treated by intratumoral injection of radioactive holmium-166 microspheres (166HoMS), named 166Ho microbrachytherapy. To our knowledge, this is the first intracranial intratumoral treatment through needle injection of radioactive microspheres.Materials and Methods: A 10-year-old Jack Russell Terrier was referred to the Clinic for Companion Animal Health (Faculty of Veterinary Medicine, Utrecht University, The Netherlands) with behavioral changes, restlessness, stiff gait, and compulsive circling. MRI and CT showed a pituitary tumor with basisphenoid bone invasion and marked mass effect. The tumor measured 8.8 cm3 with a pituitary height-to-brain area (P/B) ratio of 1.86 cm−1 [pituitary height (cm) ×10/brain area (cm2)]. To reduce tumor volume and neurological signs, 166HoMS were administered in the tumor center by transsphenoidal CT-guided needle injections.Results: Two manual CT-guided injections were performed containing 0.6 ml of 166HoMS suspension in total. A total of 1097 MBq was delivered, resulting in a calculated average tumor dose of 1866 Gy. At 138 days after treatment, the tumor volume measured 5.3 cm3 with a P/B ratio of 1.41 cm−1, revealing a total tumor volume reduction of 40%. Debulking surgery was performed five months after 166HoMS treatment due to recurrent neurological signs. The patient was euthanized two weeks later at request of the owners. Histopathological analysis indicated a pituitary adenoma at time of treatment, with more malignant characteristics during debulking surgery.Conclusion: The 40% tumor volume reduction without evident severe periprocedural side effects demonstrated the feasibility of intracranial intratumoral 166HoMS treatment in this single dog.
Nanobody-targeted photodynamic therapy (NB-PDT) has been developed as a potent and tumor-selective treatment, using nanobodies (NBs) to deliver a photosensitizer (PS) specifically to cancer cells. Upon local light application, reactive oxygen species are formed and consequent cell death occurs. NB-PDT has preclinically shown evident success and we next aim to treat cats with oral squamous cell carcinoma (OSCC), which has very limited therapeutic options and is regarded as a natural model of human head and neck SCC. Immunohistochemistry of feline OSCC tissue confirmed that the epidermal growth factor receptor (EGFR) is a relevant target with expression in cancer cells and not in the surrounding stroma. Three feline OSCC cell lines were employed together with a well-characterized human cancer cell line (HeLa), all with similar EGFR expression, and a low EGFR-expressing human cell line (MCF7), mirroring the EGFR expression level in the surrounding mucosal stroma. NBA was identified as a NB binding human and feline EGFR with comparable high affinity. This NB was developed into NiBh, a NB-PS conjugate with high PS payload able to effectively kill feline OSCC and HeLa cell lines, after illumination. Importantly, the specificity of NB-PDT was confirmed in co-cultures where only the feline OSCC cells were killed while surrounding MCF7 cells were unaffected. Altogether, NiBh can be used for NB-PDT to treat feline OSCC and further advance NB-PDT towards the human clinic.
IntroductionMinimally invasive microbrachytherapy is in development to treat solid tumors by intratumoral injection of (radioactive) holmium-166 (166Ho) microspheres (MS). A high local dose can be administered with minimal damage to surrounding tissue because of the short soft tissue penetration depth of 166Ho beta radiation. We aimed to prospectively evaluate the safety and efficacy of 166Ho microbrachytherapy in client-owned canine patients with soft tissue sarcomas (STS).MethodsWe included seven dogs with STS not suitable for local excision due to tumor size and/or location. 166HoMS were suspended in a carrier fluid and multiple needle-injections were performed in predetermined tumor segments to maximize tumor coverage. Tumor response was evaluated using 3D caliper and CT measurements. Follow-up further included monitoring for potential side effects and registration of subsequent treatments and survival, until at least two years after treatment.ResultsDelivered radioactive doses ranged from 70 to 969 Gy resulting in a mean tumor volume reduction of 49.0 ± 21.3% after 33 ± 25 days. Treatment-related side effects consisted of local necrosis (n = 1) and ulceration of the skin covering the tumor (n = 1), which resolved with basic wound care, and surgical excision of residual tumor, respectively. Residual tumor was surgically resected in six patients after 22–93 days. After a mean follow-up of 1,005 days, four patients were alive, two patients were euthanized because of unrelated causes, and one patient was euthanized because of disease progression after the owner(s) declined subsequent surgical treatment.Conclusion166Ho microbrachytherapy was a safe and effective neoadjuvant treatment option for canine patients with STS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.