Plant central metabolism generates reactive oxygen species (ROS), which are key regulators that mediate signalling pathways involved in developmental processes and plant responses to environmental fluctuations. These highly reactive metabolites can lead to cellular damage when the reduction-oxidation (redox) homeostasis becomes unbalanced. Whilst decades of research have studied redox homeostasis in leaves, fundamental knowledge in fruit biology is still fragmentary. This is even more surprising when considering the natural profusion of fruit antioxidants that can process ROS and benefit human health. In this review, we explore redox biology in fruit and provide an overview of fruit antioxidants with recent examples. We further examine the central role of the redox hub in signalling during development and stress, with particular emphasis on ascorbate, also referred to as vitamin C. Progress in understanding the molecular mechanisms involved in the redox regulations that are linked to central metabolism and stress pathways will help to define novel strategies for optimising fruit nutritional quality, fruit production and storage.
Ascorbate is a major antioxidant buffer in plants, so several approaches have been developed to increase the ascorbate contents of fruits and vegetables. In this study, we combined forward genetics with mapping-by-sequencing approaches using an EMSMicro-Tom population to identify putative regulators underlying a high ascorbate phenotype in fruits. Among the ascorbate-enriched mutants, the family with the highest fruit ascorbate level (P17C5 line, up to 5 times the WT) strongly impaired flower development and produced seedless fruit. Without progeny, genetic characterization was performed by outcrossing the P17C5 line with S. Lycopersicum cv. M82. We successfully identified the mutation responsible for the high ascorbate trait in a cis-acting upstream open reading frame (uORF) that is involved in the downstream regulation of GDP-L-galactose phosphorylase (GGP). Using a specific CRISPR strategy, we generated uORF-GGP1 mutants and confirmed the ascorbate-enriched phenotype. We further investigated the impact of the ascorbate-enrichment trait in tomato plants by phenotyping the original P17C5 EMS mutant, the population of outcrossed P17C5xM82 plants, and the CRISPR-mutated line. These studies revealed that a high ascorbate content is linked to impaired floral organ architecture, particularly anthers and pollen development, thus leading to male sterility. RNAseq analysis suggests that uORF-GGP1 acts as a regulator of ascorbate synthesis that maintains redox homeostasis to allow appropriate plant development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.