Reducing the number of secondary data used to estimate the Covariance Matrix (CM) for Space Time Adaptive Processing (STAP) techniques is still an active research topic. Within this framework, the Low-Rank (LR) structure of the clutter is well-known and the corresponding LR STAP filters have been shown to exhibit a smaller Signal Interference plus Noise Ratio (SINR) loss than classical STAP filters, only 2r secondary data (where r is the clutter rank) instead of 2m (where m is the data size) are required to reach the classical 3dB SNR loss. By using other features of the radar system, other properties of the CM can be exploited to further reduce the number of secondary data: this is the case for active systems using a symmetrically spaced linear array with constant pulse repetition interval, which results in a persymmetric structure of the noise CM. In this context, we propose to combine this property of the CM and the LR structure of the clutter to perform CM estimation. In this paper, the resulting STAP filter is shown, both theoretically and experimentally, to exhibit good performance with fewer secondary data: 3dB SINR loss is achieved with only r secondary data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.