Nitrogen is a critical ingredient of complex biological molecules 1. Molecular nitrogen, however, which was outgassed into the Earth's early atmosphere 2 , is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation 3,4. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun-so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N 2 , CO 2 and CH 4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the e cient formation of nitrous oxide could explain a warm early Earth. Here we develop a new concept for the rise of prebiotic chemistry on early Earth that suggests abiotic nitrogen fixation mediated by the energy flux from palaeo-solar eruptive events. The flare statistics of Kepler data suggest that the frequency of occurrence of superflares with energies >5 × 10 34 erg observed on G-type dwarfs follows a power-law distribution with a spectral index between α = −2.0 and −2.3, which is comparable to those observed on active M-type red-dwarf stars and the Sun 5,6. If the occurrence rate of superflares on young solar-like stars is ∼0.1 events per day 6 , then the frequency of super Carrington-type flare events with energy
International audienceMany models with different characteristics have been published so far to study the chemical processes at work in Titan's atmosphere. Some models focus on neutral species in the stratosphere or ionic species in the ionosphere, but few of them couple all the species throughout the whole atmosphere. Very few of these emphasize the importance of uncertainties in the chemical scheme and study their propagation in the model.We have developed a new 1D-photochemical model of Titan's atmosphere coupling neutral species with positive and negative ions from the lower atmosphere up to the ionosphere and have compared our results with observations to have a comprehensive view of the chemical processes driving the composition of the stratosphere and ionosphere of Titan. We have updated the neutral, positive ion and negative ion chemistry and have improved the description of N2 photodissociation by introducing high resolution N2 absorption cross sections. We performed for the first time an uncertainty propagation study in a fully coupled ion-neutral model.We determine how uncertainties on rate constants on both neutral and ionic reactions influence the model results and pinpoint the key reactions responsible for this behavior. We find very good agreement between our model results and observations in both the stratosphere and in the ionosphere for most neutral compounds. Our results are also in good agreement with an average INMS mass spectrum and specific flybys in the dayside suggesting that our chemical model (for both neutral and ions) provides a good approximation of Titan's atmospheric chemistry as a whole. Our uncertainty propagation study highlights the difficulty to interpret the INMS mass spectra for masses 14, 31, 41 and we identified the key reactions responsible for these ambiguities.Despite an overall improvement in the chemical model, disagreement for some specific compounds (HC3N, C2H5CN, C2H4) highlights the role that certain physical processes could play (meridional dynamics or sticking on aerosols). We find that some critical key reactions are important for many compounds including both neutrals and ions and should be studied in priority to lower the remaining model uncertainties. Extensive studies for some specific processes (including photolyses) are required
The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.
Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density. We report significant VCP emissions for New York City (NYC), including a monoterpene flux of 14.7 to 24.4 kg ⋅ d−1 ⋅ km−2 from fragranced VCPs and other anthropogenic sources, which is comparable to that of a summertime forest. Photochemical modeling of an extreme heat event, with ozone well in excess of US standards, illustrates the significant impact of VCPs on air quality. In the most populated regions of NYC, ozone was sensitive to anthropogenic VOCs (AVOCs), even in the presence of biogenic sources. Within this VOC-sensitive regime, AVOCs contributed upwards of ∼20 ppb to maximum 8-h average ozone. VCPs accounted for more than 50% of this total AVOC contribution. Emissions from fragranced VCPs, including personal care and cleaning products, account for at least 50% of the ozone attributed to VCPs. We show that model simulations of ozone depend foremost on the magnitude of VCP emissions and that the addition of oxygenated VCP chemistry impacts simulations of key atmospheric oxidation products. NYC is a case study for developed megacities, and the impacts of VCPs on local ozone are likely similar for other major urban regions across North America or Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.