In order to simulate the mechanical behavior of large structures assembled from thin composite panels, we propose a coupling technique which substitutes local 3D models for the global plate model in the critical zones where plate modeling is inadequate. The transition from 3D to 2D is based on stress and displacement distributions associated with Saint-Venant problems which are precalculated automatically for a simple 3D cell. The hybrid plate/3D model is obtained after convergence of a series of iterations between a global plate model of the structure and localized 3D models of the critical zones. This technique is nonintrusive because the global calculations can be carried out using commercial software. Evaluation tests show that convergence is fast and that the resulting hybrid model is very close to a full 3D model.
The non-invasive global-local coupling algorithm is revisited and shown to realize a simple implementation of the optimized non-overlapping Schwarz domain decomposition method. This connection is used to propose and compare several acceleration techniques, and to extend the approach to non conforming meshes.
Most large engineering structures are described as assemblies of plates and shells and they are computed as such using adhoc Finite Element packages. In fact their computation in 3D would be much too costly. In this framework, the connections between the parts are often modeled by means of simplified tying models. In order to improve the reliability of such simulations, we propose to apply a non-intrusive technique so as to virtually substitute the simplified connectors by a precise 3D nonlinear model, without modifying the global plate model. Moreover each computation can be conducted on independent optimized software. After a description of the method, examples are used to analyze its performance, and to draw some conclusions on the validity and limitation of both the modeling of junction by rigid connectors and the use of submodeling techniques for the estimation of the carrying capacity of bolted plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.