Cycles of Quaternary climatic change are assumed to be major drivers of African rainforest dynamics and evolution. However, most hypotheses on past vegetation dynamics relied on palaeobotanical records, an approach lacking spatial resolution, and on current patterns of species diversity and endemism, an approach confounding history and environmental determinism. In this context, a comparative phylogeographical study of rainforest species represents a complementary approach because Pleistocene climatic fluctuations may have left interpretable signatures in the patterns of genetic diversity within species. Using 1274 plastid DNA sequences from eight tree species (Afrostyrax kamerunensis, A. lepidophyllus, Erythrophleum suaveolens, Greenwayodendron suaveolens, Milicia excelsa, Santiria trimera, Scorodophloeus zenkeri and Symphonia globulifera) sampled in 50 populations of Atlantic Central Africa (ACA), we averaged divergence across species to produce the first map of the region synthesizing genetic distinctiveness and standardized divergence within and among localities. Significant congruence in divergence was detected mostly among five of the eight species and was stronger in the northern ACA. This pattern is compatible with a scenario of past forest fragmentation and recolonization whereby forests from eastern Cameroon and northeastern Gabon would have been more affected by past climatic change than those of western Cameroon (where one or more refugia would have occurred). By contrast, southern ACA (Gabon) displayed low congruence among species that may reflect less drastic past forest fragmentation or a more complex history of vegetation changes. Finally, we also highlight the potential impact of current environmental barriers on spatial genetic structures.
Species delimitation remains a crucial issue for widespread plants occurring across forest-savanna ecotone such as Lophira (Ochnaceae). Most taxonomists recognize two parapatric African tree species, widely distributed and morphologically similar but occurring in contrasted habitats: L. lanceolata in the Sudanian dry forests and savannahs and L. alata in the dense Guineo-Congolian forests. Both species co-occur along a c. 3000 km long forest-savanna mosaic belt, constituting ideal models for investigating hybridization patterns and the impact of past glacial periods on the genetic structures in two types of ecosystems. We genotyped 10 nuclear microsatellites for 803 individuals sampled across the distribution range of Lophira. Both species exhibit similar levels of genetic diversity (He = 0.52 (L. alata); 0.44 (L. lanceolata)) and are well differentiated, consistent with taxonomic delimitation (FST = 0.36; RST = 0.49), refuting the hypothesis that they might constitute ecotypes rather than distinct species. Furthermore, L. alata displayed two deeply differentiated clusters (FST = 0.37; RST = 0.53) distributed in parapatry, one endemic to Western Gabon while another cluster extended over the remaining species range, suggests that L. alata is made of two cryptic species. We showed that rare hybrids occur in some contact zones between these three species, leaving a weak signal of introgression between L. lanceolata and the northern cluster of L. alata. At the intra-specific level, the latter species also show weak genetic structuring between Upper and Lower Guinea and the intensity did not differ strikingly between rainforest and savanna ecosystems. The discovery of a new species of Lophira with a narrow distribution in West Gabon where it is intensively exploited for its timber requires to evaluate its conservation status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.