The cytoskeleton (CSK) is a crowded network of structural proteins that stabilizes cell shape and drives cell motions. Recent studies on the dynamics of the CSK have established that a wide variety of cell types exhibit rheology in which responses are not tied to any particular relaxation times and are thus scale-free. Scale-free rheology is often found in a class of materials called soft glasses, but not all materials expressing scale-free rheology are glassy (see plastics, wood, concrete or some metals for example). As such, the extent to which dynamics of the CSK might be regarded as glassy remained an open question. Here we report both forced and spontaneous motions of microbeads tightly bound to the CSK of human muscle cells. Large oscillatory shear fluidized the CSK matrix, which was followed by slow scale-free recovery of rheological properties (aging). Spontaneous bead motions were subdiffusive at short times but superdiffusive at longer times; intermittent motions reflecting nanoscale CSK rearrangements depended on both the approach to kinetic arrest and energy release due to ATP hydrolysis. Aging, intermittency, and approach to kinetic arrest establish a striking analogy between the behaviour of the living CSK and that of inert non-equilibrium systems, including soft glasses, but with important differences that are highly ATP-dependent. These mesoscale dynamics link integrative CSK functions to underlying molecular events, and represent an important intersection of topical issues in condensed matter physics and systems biology.
Optical tweezers are used to apply calibrated forces to human erythrocytes, via small silica beads bound to their membrane. The shear modulus mu of the membrane is inferred from measurements of the cell deformation in the small strain linear regime. We find the same result mu = 2.5 +/- 0.4 microN/m for both discotic and nearly spherical swollen cells. This value is smaller than the one deduced from micropipettes experiments. However the two methods do not operate in the same deformation regime and are not expected to lead to the same result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.