Volcanoes play an important role in the global cycling of elements by providing a pathway from the deep Earth to its surface. Here, we have constrained the flux to the environment for most elements of the periodic table for the passively degassing, crater lake-hosting Kawah Ijen volcano in the Indonesian arc. Our results indicate that emissions of Kawah Ijen are dominated by acid water outflow, especially for the ligands (Cl, F, Br), with active fumaroles contributing significant (semi)metals (e.g. Se, As, Sb, Hg), as well as C and S. The compositional signature of emissions from Kawah Ijen is similar to that of major volcanic emitters such as Etna, but element fluxes are smaller. This result provides the prerequisite foundation for extrapolating a small set of measured volcanic gas emissions to a global volcanic flux estimate. However, the aqueous flux (i.e. seepage of volcanic hydrothermal fluids and volcano-influenced groundwater) is at least as important in terms of element release, and the consideration of the gaseous flux alone thus represents a significant underestimate of the impact of volcanoes on their environment and the contribution of volcanic hydrothermal systems to global element cycling.Supplementary material: The full datasets of water and fumarole gas chemical analyses are available at https://doi.org/10.6084/m9.figshare.c.2134359
a b s t r a c t KeywordsMasaya Hydrothermal Self-potential Wavelet Groundwater Volcano Masaya volcano, Nicaragua, is a persistently active volcano characterized by continuous passive degassing for more than 150 years through the open vent of Santiago crater. This study applies self-potential, soil CO 2 and ground temperature measurements to highlight the existence of uprising fluids associated to diffuse degassing structures throughout the volcano. The diffuse degassing areas are organized in a semi-circular pattern and coincide with several visible and inferred surface volcanic structures (cones, fissure vents) and likely consist of a network of buried faults and dykes that respectively channel uprising flow and act as barrier to gravitational groundwater flow. Water depths have been estimated by multi-scale wavelet tomography of the self-potential data using wavelets from the Poisson kernel family. Compared to previous water flow models, our water depth estimates are shallower and mimic the topography, typically less than 150 m below the surface. Between 2006 and 2010, the depths of rising fluids along the survey profiles remained stable suggesting that hydrothermal activity is in a steady state. This stable activity correlates well with the consistency of the volcanic activity expressed at the surface by the continuously passive degassing. When compared to previous structural models of the caldera floor, it appears that the diffuse degassing structures have an important effect on the path that shallow groundwater follows to reach the Laguna de Masaya in the eastern part of the caldera. The hydrogeological system is therefore more complex than previously published models and our new structural model implies that the flow of shallow groundwater must bypass the intrusions to reach the Laguna de Masaya. Furthermore, these diffuse degassing structures show clear evidence of activity and must be connected to a shallow magmatic or hydrothermal reservoir beneath the caldera. As such, the heat budget for Masaya must be significantly larger than previously estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.