Molecular simulations have allowed us to probe the atomic details of aqueous solutions of tetramethylammonium (TMA) and tetrabutylammonium (TBA) bromide, across a wide range of concentrations (0.5 to 3-4 molal). We highlight the space-filling (TMA(+)) versus penetrable (TBA(+)) nature of these polyatomic cations and its consequence for ion hydration, ion dynamics and ion-ion interactions. A well-established hydration is seen for both TMA(+) and TBA(+) throughout the concentration range studied. A clear penetration of water molecules, as well as counterions, between the hydrocarbon arms of TBA(+), which remain in an extended configuration, is seen. Global rotation of individual TBA(+) points towards isolated rather than aggregated ions (from dilute up to 1 m concentration). Only for highly concentrated solutions, in which inter-penetration of adjacent TBA(+)s cannot be avoided, does the rotational time increase dramatically. From both structural and dynamic data we conclude that there is absence of hydrophobicity-driven cation-cation aggregation in both TMABr and TBABr solutions studied. The link between these real systems and the theoretical predictions for spherical hydrophobic solutes of varying size does not seem straightforward.
In the present study, the structure of monophasic ionic magnetic fluids under a static magnetic field is explored. In these aqueous electrostatically stabilized ferrofluids, we vary both the isotropic interparticle interactions and the anisotropic dipolar magnetic interaction by tuning the ionic strength and the size of the nanoparticles. Small angle neutron scattering measurements carried out on nanoparticles dispersed in light water exhibit miscellaneous 2D nuclear patterns under a magnetic field with various q-dependent anisotropies. In this nondeuterated solvent where the magnetic scattering is negligible, this anisotropy originates from an anisotropy of the structure of the dispersions. Both the low q region and the peak of the structure factor can be anisotropic. On the scale of the interparticle distance, the structure is better defined in the direction perpendicular to the field. In the thermodynamic limit (q-->0), the model previously described in ref 10 matches the data without any fitting parameters: the interparticle interaction is more repulsive in the direction parallel to the magnetic field. At low q, the amplitude of the anisotropy of the pattern is governed by the ratio of two interaction parameters: the reduced parameter of the anisotropic magnetic dipolar interaction, gamma/Phi, over the isotropic interaction parameter, , in zero field, which is proportional to the second virial coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.