The modes of As(III) sorption onto two-line ferrihydrite (Fh), hematite (Hm), goethite (Gt), and lepidocrocite (Lp) have been investigated under anoxic condition using X-ray absorption spectroscopy (XAS). X-ray absorption near-edge structure spectroscopy (XANES) indicates that the absence of oxygen minimized As(III) oxidation due to Fenton reactions. Extended X-ray absorption fine structure spectroscopy (EXAFS) indicates thatAs(III)forms similar inner-sphere surface complexes on two-line ferrihydrite and hematite that differ from those formed on goethite and lepidocrocite. At high surface coverage, the dominant complex types on Fh and Hm are bidentate mononuclear edge-sharing (2E) and bidentate binuclear corner-sharing (2C), with As-Fe distances of 2.90 +/- 0.05 and 3.35 +/- 0.05 A, respectively. The same surface complexes are observed for ferrihydrite at low surface coverage. In contrast, As(III) forms dominantly bidentate binuclear corner-sharing (2C) sorption complexes on Gt and Lp [d(As-Fe) = 3.3-3.4 A], with a minor amount of monodentate mononuclear corner-sharing (1V) complexes [d(As-Fe) = 3.5-3.6 A]. Bidentate mononuclear edge-sharing (2E) complexes are virtually absent in Gt and Lp at the high surface coverages that were investigated in the present study. These results are compared with available literature data and discussed in terms of the reactivity of iron(III) (oxyhydr)oxide surface sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.