Hundreds of dams have been proposed throughout the Amazon basin, one of the world’s largest untapped hydropower frontiers. While hydropower is a potentially clean source of renewable energy, some projects produce high greenhouse gas (GHG) emissions per unit electricity generated (carbon intensity). Here we show how carbon intensities of proposed Amazon upland dams (median = 39 kg CO2eq MWh−1, 100-year horizon) are often comparable with solar and wind energy, whereas some lowland dams (median = 133 kg CO2eq MWh−1) may exceed carbon intensities of fossil-fuel power plants. Based on 158 existing and 351 proposed dams, we present a multi-objective optimization framework showing that low-carbon expansion of Amazon hydropower relies on strategic planning, which is generally linked to placing dams in higher elevations and smaller streams. Ultimately, basin-scale dam planning that considers GHG emissions along with social and ecological externalities will be decisive for sustainable energy development where new hydropower is contemplated.
Abstract. In this paper, we describe Compact- Table (CT), a bitwise algorithm to enforce Generalized Arc Consistency (GAC) on table constraints. Although this algorithm is the default propagator for table constraints in or-tools and OscaR, two publicly available CP solvers, it has never been described so far. Importantly, CT has been recently improved further with the introduction of residues, resetting operations and a data-structure called reversible sparse bit-set, used to maintain tables of supports (following the idea of tabular reduction): tuples are invalidated incrementally on value removals by means of bit-set operations. The experimentation that we have conducted with OscaR shows that CT outperforms state-of-the-art algorithms STR2, STR3, GAC4R, MDD4R and AC5-TC on standard benchmarks.
Proposed hydropower dams at more than 350 sites throughout the Amazon require strategic evaluation of trade-offs between the numerous ecosystem services provided by Earth’s largest and most biodiverse river basin. These services are spatially variable, hence collective impacts of newly built dams depend strongly on their configuration. We use multiobjective optimization to identify portfolios of sites that simultaneously minimize impacts on river flow, river connectivity, sediment transport, fish diversity, and greenhouse gas emissions while achieving energy production goals. We find that uncoordinated, dam-by-dam hydropower expansion has resulted in forgone ecosystem service benefits. Minimizing further damage from hydropower development requires considering diverse environmental impacts across the entire basin, as well as cooperation among Amazonian nations. Our findings offer a transferable model for the evaluation of hydropower expansion in transboundary basins.
Abstract. We introduce GAC-4R, MDD-4, and MDD-4R three new algorithms for maintaining arc consistency for table and MDD constraints. GAC-4R improves the well-known GAC-4 algorithm by managing the internal data structures in a different way. Instead of maintaining the internal data structures only by studying the consequences of deletions, we propose to reset the data structures by recomputing them from scratch whenever it saves time. This idea avoids the major drawback of the GAC-4 algorithm, i.e., its cost at a shallow searchtree depth. We also show that this idea can be exploited in MDD constraints. Experiments show that GAC-4R is competitive with the best arc-consistency algorithms for table constraints, and that MDD-4R clearly outperforms all classical algorithms for table or MDD constraints.
We propose in this paper a new method processing the projection of an arbitrary size vector onto the probabilistic simplex or the 1 ball. Our method merges two principles. The first one is an original search of the projection using a bucket algorithm. The second one is a filtering, on the fly, of the values that cannot be part of the projection. The combination of these two principles offers a simple and efficient algorithm whose worst-case complexity is linear with respect to the vector size. Furthermore, the proposed algorithm exploits the representation of numeric values in digital computers to define the number of buckets and to accelerate the filtering. Mathematics Subject Classification 49M30 • 65C60 • 65K05 • 90C25 Part of this work has been already published [12].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.