Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada’s goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.
The world's forests play an important role in regulating climate change through their capacity to sequester carbon. At the same time, they are also increasingly vulnerable to the impacts of climate change. In the western Canadian province of British Columbia, changes in temperature, precipitation, and disturbance regimes are already impacting forests. In response to these observed and anticipated changes, adapted reforestation practices are being developed and proposed as a means to help forest ecosystems adjust to changing climatic conditions. One such practice under consideration is assisted migration-planting species within or outside of the native historical range into areas that are anticipated to be climatically suitable in the future. We used a survey of British Columbia's population at large (n = 1923) to quantify levels of support for a range of potential reforestation options (including assisted migration) to adapt to climate change, and to explore what factors can help predict this support. Our findings reveal that the likely location of potential public controversy resides not with the potential implementation of assisted migration strategies per se, but rather with assisted migration strategies that involve movement of tree species beyond their native range.
Environmental assessment is the process that decision-makers rely on to predict, evaluate, and prevent biophysical, social, and economic impacts of potential project developments. The determination of significance in environmental assessment is central to environmental management in many nations. We reviewed ten recent environmental impact assessments from British Columbia, Canada and systematically reviewed and scored significance determination and the approaches used by assessors, the use of thresholds in significance determination, threshold exceedances, and the outcomes. Findings of significant impacts were exceedingly rare and practitioners used a combination of significance determination approaches, most commonly relying upon reasoned argumentation. Quantitative thresholds were rarely employed, with less than 10% of the valued components evaluated using thresholds. Even where quantitative thresholds for significance were exceeded, in every case practitioners used a variety of rationales to demote negative impacts to non-significance. These reasons include combinations of scale (temporal and spatial) of impacts, an already exceeded baseline, model uncertainty and/or substituting less stringent thresholds. Governments and agencies can better protect resources by requiring clear and defensible significance determinations, by making government-defined thresholds legally enforceable and accountable, and by requiring or encouraging significance determination through inclusive and collaborative approaches.
Conservation practices during the first decade of the millennium predominantly focused on resisting changes and maintaining historical or current conditions, but ever-increasing impacts from climate change have highlighted the need for transformative action. However, little empirical evidence exists on what kinds of conservation actions aimed specifically at climate change adaptation are being implemented in practice, let alone how transformative these actions are. In response, we propose and trial a novel typology—the R–R–T scale, which improves on existing concepts of Resistance, Resilience, and Transformation—that enables the practical application of contested terms and the empirical assessment of whether and to what extent a shift toward transformative action is occurring. When applying the R–R–T scale to a case study of 104 adaptation projects funded since 2011, we find a trend towards transformation that varies across ecosystems. Our results reveal that perceptions about the acceptance of novel interventions in principle are beginning to be expressed in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.