The Mullins' effect remains a major challenge in order to provide good mechanical modeling of the complex behavior of industrial rubber materials. It's been forty years since Mullins [1] wrote his review on the phenomenon and still no general agreement has been found either on the physical source or on the mechanical modeling of this effect. Therefore, we reviewed the literature dedicated to this topic over the past six decades. We present the experimental evidences, which characterize the Mullins' softening. The phenomenon is observed in filled and crystallizing rubbers. Then, the phenomenological models dedicated to fit the mechanical behavior of rubbers undergoing some Mullins' softening are studied. To overcome the limit of a descriptive phenomenological modeling, several authors looked for a physical understanding of the phenomenon. Various theories have been exposed, but none of them has been supported unanimously. Nonetheless, these theories favor the emergence of physically based mechanical behavior laws. We tested some of these laws, which show little predictive abilities since the values of their parameters do not compare well with the physical quantities they are linked to.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.