In S. cerevisiae, the ASH1 mRNA is localized at the bud tip of late-anaphase cells, resulting in the exclusive sorting of Ash1p to the daughter cell nucleus. While the mechanism behind the localization of this transcript has been well studied, the regulation of its translation is still poorly understood. We now report that the RNA binding protein Khd1 interacts with the ASH1 mRNA localization element E1 and with the C-terminal domain of eIF4G1 to regulate the translation of this transcript. Khd1p reduces translation initiation on the ASH1 mRNA and diminishes Ash1p leakage into the mother cell nucleus. Furthermore, we show that the casein kinase Yck1p phosphorylates Khd1p at the plasma membrane, disrupting the Khd1p-RNA complex and releasing its translational repression on the ASH1 mRNA. This study reveals how, by linking mRNA sorting and translational activation, Khd1p and Yck1p regulate the spatiotemporal expression of a cell fate determinant.
In Saccharomyces cerevisiae, over twenty mRNAs localize to the bud tip of daughter cells, playing roles in processes as different as mating type switching and plasma membrane targeting. The localization of these transcripts depends on interactions between a cis-acting localization element(s) or zipcodes and the RNAbinding protein She2p. While previous studies identified four different localization elements in the budlocalized ASH1 mRNA, the main determinants for She2p recognition are still unknown. To investigate the RNA-binding specificity of She2p, we isolated She2p-binding RNAs by in vivo selection from libraries of partially randomized ASH1 localization elements. The RNAs isolated contained a similar loop-stem-loop structure with a highly conserved CGA triplet in one loop and a single conserved cytosine in the other loop. Mutating these conserved nucleotides or the stem separating them resulted in the loss of She2p binding and in the delocalization of a reporter mRNA. Using this information, we identified the same RNA motif in two other known bud-localized transcripts, suggesting that this motif is conserved among bud-localized mRNAs. These results show that mRNAs with zipcodes lacking primary sequence similarity can rely on a few conserved nucleotides properly oriented in their three-dimensional structure in order to be recognized by the same localization machinery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.