The self-assembly of a blue-emitting light-harvesting organogelator and specifically designed highly fluorescent tetracenes yields nanofibers with tunable emissive properties. In particular, under near-UV excitation, white light emission is achieved in organogels and dry films of nanofibers. Confocal fluorescence microspectroscopy demonstrates that each individual nanofiber emits white light. A kinetic study shows that an energy transfer (ET) occurs between the blue-emitting anthracene derivative and the green- and red-emitting tetracenes, while inter-tetracene ETs also take place. Moreover, microscopy unravels that the nanofibers emit polarized emission in the blue spectral region, while at wavelengths higher than 500 nm the emission is not significantly polarized.
Organic/inorganic hybrid gels have been developed in order to control the three-dimensional structure of photoactive nanofibers and metallic nanoparticles (NPs). These materials are prepared by simultaneous self-assembly of the 2,3-didecyloxyanthracene (DDOA) gelator and of thiol-capped gold nanoparticles (AuNPs). TEM and fluorescence measurements show that alkane-thiol capped AuNPs are homogeneously dispersed and tightly attached to the thermoreversible fibrillar network formed by the organogelator in n-butanol or n-decanol. Rheology and thermal stability measurements reveal moreover that the mechanical and thermal stabilities of the DDOA organogels are not significantly altered and that they remain strong, viscoelastic materials. The hybrid materials display a variable absorbance in the visible range because of the AuNPs, whereas the strong luminescence of the DDOA nanofibers is efficiently quenched by micromolar amounts of AuNPs. Besides, we obtained hybrid aerogels using supercritical CO2. These are very low-density porous materials showing fibrillar networks on which fluorinated gold NPs are dispersed. These hybrid materials are of high interest because of their tunable optical properties and are under investigation for efficient light scattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.