IMPORTANCEThe benefit of high-dose dexamethasone and oxygenation strategies vs standard of care for patients with severe acute hypoxemic respiratory failure (AHRF) caused by COVID-19 pneumonia is debated.OBJECTIVES To assess the benefit of high-dose dexamethasone compared with standard of care dexamethasone, and to assess the benefit of high-flow nasal oxygen (HFNO 2 ) or continuous positive airway pressure (CPAP) compared with oxygen support standard of care (O 2 SC). DESIGN, SETTING, AND PARTICIPANTSThis multicenter, placebo-controlled randomized clinical trial was conducted in 19 intensive care units (ICUs) in France from April 2020 to January 2021. Eligible patients were consecutive ICU-admitted adults with COVID-19 AHRF. Randomization used a 2 × 3 factorial design for dexamethasone and oxygenation strategies; patients not eligible for at least 1 oxygenation strategy and/or already receiving invasive mechanical ventilation (IMV) were only randomized for dexamethasone. All patients were followed-up for 60 days. Data were analyzed from May 26 to July 31, 2021.INTERVENTIONS Patients received standard dexamethasone (dexamethasone-phosphate 6 mg/d for 10 days [or placebo prior to RECOVERY trial results communication]) or high-dose dexamethasone (dexamethasone-phosphate 20 mg/d on days 1-5 then 10 mg/d on days 6-10). Those not requiring IMV were additionally randomized to O 2 SC, CPAP, or HFNO 2 . MAIN OUTCOMES AND MEASURESThe main outcomes were time to all-cause mortality, assessed at day 60, for the dexamethasone interventions, and time to IMV requirement, assessed at day 28, for the oxygenation interventions. Differences between intervention groups were calculated using proportional Cox models and expressed as hazard ratios (HRs). RESULTS Among 841 screened patients, 546 patients (median [IQR] age, years; 414 [75.8%] men) were randomized between standard dexamethasone (276 patients, including 37 patients who received placebo) or high-dose dexamethasone (270 patients). Of these, 333 patients were randomized among O 2 SC (109 patients, including 56 receiving standard dexamethasone), CPAP (109 patients, including 57 receiving standard dexamethasone), and HFNO 2 (115 patients, including 56 receiving standard dexamethasone). There was no difference in 60-day mortality between standard and high-dose dexamethasone groups (HR, 0.96 [95% CI, 0.69-1.33]; P = .79). There was no significant difference for the cumulative incidence of IMV criteria at day 28 among O 2 support groups (O 2 SC vs CPAP: HR, 1.08 [95% CI, 0.71-1.63]; O 2 SC vs HFNO 2 : HR, 1.04 [95% CI, 0.69-1.55]) or 60-day mortality (O 2 SC vs CPAP: HR, 0.97 [95% CI, 0.58-1.61; O 2 SC vs HFNO 2 : HR, 0.89 [95% CI,). Interactions between interventions were not significant. CONCLUSIONS AND RELEVANCEIn this randomized clinical trial among ICU patients with COVID-19-related AHRF, high-dose dexamethasone did not significantly improve 60-day survival. The oxygenation strategies in patients who were not initially receiving IMV did not significantly modify 28-day risk of...
Antibody-mediated rejection is currently the leading cause of transplant failure. Prevailing dogma predicts that B cells differentiate into anti-donor-specific antibody (DSA)-producing plasma cells only with the help of CD4+ T cells. Yet, previous studies have shown that dependence on helper T cells decreases when high amounts of protein antigen are recruited to the spleen, two conditions potentially met by organ transplantation. This could explain why a significant proportion of transplant recipients develop DSA despite therapeutic immunosuppression. Using murine models, we confirmed that heart transplantation, but not skin grafting, is associated with accumulation of a high quantity of alloantigens in recipients’ spleen. Nevertheless, neither naive nor memory DSA responses could be observed after transplantation of an allogeneic heart into recipients genetically deficient for CD4+ T cells. These findings suggest that DSA generation rather result from insufficient blockade of the helper function of CD4+ T cells by therapeutic immunosuppression. To test this second theory, different subsets of circulating T cells: CD8+, CD4+, and T follicular helper [CD4+CXCDR5+, T follicular helper cells (Tfh)], were analyzed in 9 healthy controls and 22 renal recipients. In line with our hypothesis, we observed that triple maintenance immunosuppression (CNI + MMF + steroids) efficiently blocked activation-induced upregulation of CD25 on CD8+, but not on CD4+ T cells. Although the level of expression of CD40L and ICOS was lower on activated Tfh of immunosuppressed patients, the percentage of CD40L-expressing Tfh was the same than control patients, as was Tfh production of IL21. Induction therapy with antithymocyte globulin (ATG) resulted in prolonged depletion of Tfh and reduction of CD4+ T cells number with depleting monoclonal antibody in murine model resulted in exponential decrease in DSA titers. Furthermore, induction with ATG also had long-term beneficial influence on Tfh function after immune reconstitution. We conclude that CD4+ T cell help is mandatory for naive and memory DSA responses, making Tfh cells attractive targets for improving the prevention of DSA generation and to prolong allograft survival. Waiting for innovative treatments to be translated into the clinical field ATG induction seems to currently offer the best clinical prospect to achieve this goal.
OBJECTIVES:Our aim was to describe changes in the management of acute exacerbations of chronic obstructive pulmonary disease (AECOPD) by ICUs and patient outcomes. DESIGN:We extracted data from the OutcomeRea database concerning patients admitted for AECOPD between 1997 and 2018. We analyzed trends in the use of ventilatory support, corticosteroid therapy, antibiotic therapy, and patient survival.SETTING: ICUs at 32 French sites. PATIENTS:One thousand eight hundred sixteen patients in the database had a diagnosis of AECOPD. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS:Over time, there was a reduction in the prescription of corticosteroids and antibiotics. In a time-series analysis, these changes in practice were not linked with ICU mortality. The proportion of patients treated with invasive mechanical ventilation (IMV) also gradually declined (from 51% between 1997 and 2002 to 35% between 2013 and 2018) with an association between decrease in IMV use and reduction in ICU mortality in a time series analysis. Rates of noninvasive ventilation (NIV) failure decreased with an increase in NIV use to support weaning from IMV. There was a reduction in the median ICU
Objective: To address the issue of ventilator shortages, our group (eSpiro Network) developed a freely replicable, open-source hardware ventilator. Design: We performed a bench study. Setting: Dedicated research room as part of an ICU affiliated to a university hospital. Subjects: We set the lung model with three conditions of resistance and linear compliance for mimicking different respiratory mechanics of representative intensive care unit (ICU) patients. Interventions: The performance of the device was tested using the ASL5000 lung model. Measurements and Main Results: Twenty-seven conditions were tested. All the measurements fell within the ±10% limits for the tidal volume (VT). The volume error was influenced by the mechanical condition (p = 5.9 × 10−15) and the PEEP level (P = 1.1 × 10−12) but the clinical significance of this finding is likely meaningless (maximum −34 mL in the error). The PEEP error was not influenced by the mechanical condition (p = 0.25). Our experimental results demonstrate that the eSpiro ventilator is reliable to deliver VT and PEEP accurately in various respiratory mechanics conditions. Conclusions: We report a low-cost, easy-to-build ventilator, which is reliable to deliver VT and PEEP in passive invasive mechanical ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.