Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.
On an artist's profile page, music streaming services frequently recommend a ranked list of "similar artists" that fans also liked.However, implementing such a feature is challenging for new artists, for which usage data on the service (e.g. streams or likes) is not yet available. In this paper, we model this cold start similar artists ranking problem as a link prediction task in a directed and attributed graph, connecting artists to their top-𝑘 most similar neighbors and incorporating side musical information. Then, we leverage a graph autoencoder architecture to learn node embedding representations from this graph, and to automatically rank the top-𝑘 most similar neighbors of new artists using a gravity-inspired mechanism. We empirically show the flexibility and the effectiveness of our framework, by addressing a real-world cold start similar artists ranking problem on a global music streaming service. Along with this paper, we also publicly release our source code as well as the industrial graph data from our experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.