The theoretical description of nuclear fission remains one of the major challenges of quantum many-body dynamics. The motion through the fission barrier is followed by a fast, nonadiabatic descent of the potential between the fragments. The latter stage is crucial as it generates most of the excitation energy in the fragments. The superfluid dynamics in the latter stage of fission is obtained from the time-dependent Hartree-Fock theory including BCS dynamical pairing correlations. The fission modes of the 258 Fm nucleus are studied. The resulting fission fragment characteristics show good agreement with experimental data. Quantum shell effects are shown to play a crucial role in the dynamics and formation of the fragments. The importance of quantum fluctuations beyond the independent particle and quasiparticle picture is emphasized and qualitatively studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.