BackgroundThe majority of human cancer deaths are caused by metastasis. The metastatic dissemination is initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to as epithelial to mesenchymal transition (EMT), cells change their genetic and trancriptomic program leading to phenotypic and functional alterations. The challenge of understanding this dynamic process resides in unraveling regulatory networks involving master transcription factors (e.g. SNAI1/2, ZEB1/2 and TWIST1) and microRNAs. Here we investigated microRNAs regulated by SNAI1 and their potential role in the regulatory networks underlying epithelial plasticity.ResultsBy a large-scale analysis on epithelial plasticity, we highlighted miR-203 and its molecular link with SNAI1 and the miR-200 family, key regulators of epithelial homeostasis. During SNAI1-induced EMT in MCF7 breast cancer cells, miR-203 and miR-200 family members were repressed in a timely correlated manner. Importantly, miR-203 repressed endogenous SNAI1, forming a double negative miR203/SNAI1 feedback loop. We integrated this novel miR203/SNAI1 with the known miR200/ZEB feedback loops to construct an a priori EMT core network. Dynamic simulations revealed stable epithelial and mesenchymal states, and underscored the crucial role of the miR203/SNAI1 feedback loop in state transitions underlying epithelial plasticity.ConclusionBy combining computational biology and experimental approaches, we propose a novel EMT core network integrating two fundamental negative feedback loops, miR203/SNAI1 and miR200/ZEB. Altogether our analysis implies that this novel EMT core network could function as a switch controlling epithelial cell plasticity during differentiation and cancer progression.
The Cauliflower mosaic virus (CaMV) open reading frame VI product (P6) is essential for the viral infection cycle. It controls translation reinitiation of the viral polycistronic RNAs and forms cytoplasmic inclusion bodies (viroplasms) where virus replication and assembly occur. In this study, the mechanism involved in viroplasm formation was investigated by in vitro and in vivo experiments. Far protein gel blot assays using a collection of P6 deletion mutants demonstrated that the N-terminal a-helix of P6 mediates interaction between P6 molecules. Transient expression in tobacco (Nicotiana tabacum) BY-2 cells of full-length P6 and P6 mutants fused to enhanced green fluorescent protein revealed that viroplasms are formed at the periphery of the nucleus and that the N-terminal domain of P6 is an important determinant in this process. Finally, this study led to the unexpected finding that P6 is a nucleocytoplasmic shuttle protein and that its nuclear export is mediated by a Leu-rich sequence that is part of the a-helix domain implicated in viroplasm formation. The discovery that P6 can localize to the nucleus opens new prospects for understanding yet unknown roles of this viral protein in the course of the CaMV infection cycle.
Epithelial to mesenchymal transition (EMT) is a key step toward metastasis. MCF7 breast cancer cells conditionally expressing the EMT master regulator SNAI1 were used to identify early expressed microRNAs (miRNAs) and their targets that may contribute to the EMT process. Potential targets of miRNAs were identified by matching lists of in silico predicted targets and of inversely expressed mRNAs. MiRNAs were ranked based on the number of predicted hits, highlighting miR-661, a miRNA with so far no reported role in EMT. MiR-661 was found required for efficient invasion of breast cancer cells by destabilizing two of its predicted mRNA targets, the cell-cell adhesion protein Nectin-1 and the lipid transferase StarD10, resulting, in turn, in the downregulation of epithelial markers. Reexpression of Nectin-1 or StarD10 lacking the 3 0 -untranslated region counteracted SNAI1-induced invasion. Importantly, analysis of public transcriptomic data from a cohort of 295 well-characterized breast tumor specimen revealed that expression of StarD10 is highly associated with markers of luminal subtypes whereas its loss negatively correlated with the EMT-related, basal-like subtype. Collectively, our nona priori approach revealed a nonpredicted link between SNAI1-triggered EMT and the down-regulation of Nectin-1 and StarD10 through the up-regulation of miR-661, which may contribute to the invasion of breast cancer cells and poor disease outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.