Given a general critical or sub-critical branching mechanism, we define a pruning procedure of the associated Lévy continuum random tree. This pruning procedure is defined by adding some marks on the tree, using Lévy snake techniques. We then prove that the resulting sub-tree after pruning is still a Lévy continuum random tree. This last result is proved using the exploration process that codes the CRT, a special Markov property and martingale problems for exploration processes. We finally give the joint law under the excursion measure of the lengths of the excursions of the initial exploration process and the pruned one.
Abstract. Given a general critical or sub-critical branching mechanism and its associated Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson snake. It defines a fragmentation process on the tree. We compute the family of dislocation measures associated with this fragmentation. This work generalizes the work made for a Brownian tree [R. Abraham and L. Serlet, Elect. J. Probab. 7 (2002) Mathematics Subject Classification. 60J25, 60G57, 60J80.
In [AP98b] a tree-valued Markov chain is derived by pruning off more and more subtrees along the edges of a Galton-Watson tree. More recently, in [AD12], a continuous analogue of the tree-valued pruning dynamics is constructed along Lévy trees. In the present paper, we provide a new topology which allows to link the discrete and the continuous dynamics by considering them as instances of the same strong Markov process with different initial conditions. We construct this pruning process on the space of so-called bi-measure trees, which are metric measure spaces with an additional pruning measure. The pruning measure is assumed to be finite on finite trees, but not necessarily locally finite. We also characterize the pruning process analytically via its Markovian generator and show that it is continuous in the initial bi-measure tree. A series of examples is given, which include the case where the pruning measure is the length measure on the underlying tree.
International audienceConsider a 1-D diffusion in a stable Lévy environment. In this article, we prove that the normalized local time process recentred at the bottom of the standard valley with height log t, converges in law to a functional of two independent Lévy processes, which are conditioned to stay positive. In the proof of the main result, we derive that the law of the standard valley is close to a two-sided Lévy process conditioned to stay positive. Moreover, we compute the limit law of the supremum of the normalized local time. In the case of a Brownian environment, similar result to the ones proved here have been obtained by Andreoletti and Diel
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.