Deep Reinforcement Learning (DRL) is applied to control a nonlinear, chaotic system governed by the one-dimensional Kuramoto-Sivashinsky (KS) equation. DRL uses reinforcement learning principles for the determination of optimal control solutions and deep Neural Networks for approximating the value function and the control policy. Recent applications have shown that DRL may achieve superhuman performance in complex cognitive tasks.In this work, we show that using restricted, localized actuations, partial knowledge of the state based on limited sensor measurements, and model-free DRL controllers, it is possible to stabilize the dynamics of the KS system around its unstable fixed solutions, here considered as target states. The robustness of the controllers is tested by considering several trajectories in the phase-space emanating from different initial conditions; we show that the DRL is always capable of driving and stabilizing the dynamics around the target states.The complexity of the KS system, the possibility of defining the DRL control policies by solely relying on the local measurements of the system, and their efficiency in controlling its nonlinear dynamics pave the way for the application of RL methods in control of complex fluid systems such as turbulent boundary layers, turbulent mixers or multiphase flows.
In this paper, we present a straightforward strategy for transferring dependency parsers across languages. The proposed method learns a parser from partially annotated data obtained through the projection of annotations across unambiguous word alignments. It does not rely on any modeling of the reliability of dependency and/or alignment links and is therefore easy to implement and parameter free. Experiments on six languages show that our method is at par with recent algorithmically demanding methods, at a much cheaper computational cost. It can thus serve as a fair baseline for transferring dependencies across languages with the use of parallel corpora.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.